Главная » Автохимия » Приработка цилиндрической зубчатой пары. Методы нарезания цилиндрических зубчатых колёс

Приработка цилиндрической зубчатой пары. Методы нарезания цилиндрических зубчатых колёс

Методы обработки зубьев цилиндрических колес разделяются на две группы: методы копирования и методы обкатки.

При обработке методом копирования профиль инструмента должен быть таким же, как профиль впадины между зубьями колеса. Зубья нарезают на обыкновенном фрезерном станке общего назначения фасонной дисковой или фасонной концевой фрезой с помощью универсальной делительной головки. После прорезания одной впадины производят деление и фрезеруют следующую. Для уменьшения накопленной погрешности, впадины прорезают не подряд, а через несколько зубьев. Метод дает низкую точность и малую производительность и применяется в условиях единичного производства для получения колес 9-10 степенен точности.

Метод обкатки допускает применение инструмента с прямолинейными режущими кромками. По сравнению с методом копирования метод обкатки отличается большей точностью, возможностью использовать один и тот же инструмент для обработки колес с различным числом зубьев. Рассмотрим нарезание колес, осуществляемые методом обкатки.

Зубофрезерование. Зубофрезерование методом обкатки широко используется для нарезания цилиндрических колес внешнего зацепления с прямыми и косыми зубьями. Операцию выполняют на зубофрезерном станке червячной фрезой (рис. 12). В процессе зубофрезерования главным рабочим

Зубофрезерование червячной фрезой - основной метод нарезания колес с косыми зубьями. Этот метод проще, чем другие методы (зубодолбление).

От точности установки заготовки (совпадения оси посадочного места с осью вращения стола станка) зависят основные точностные параметры колес. Поэтому для получения колес высокой степени точности перед зубофрезерованием необходимо посадочные цилиндр и торец обработать в одной операции, с точностью по диаметру не ниже 7 квалитета. При одновременной обработке нескольких заготовок в пакете в предшествующих операциях необходимо выдержать параллельность торцов у заготовок и перпендикулярность их к оси посадочного цилиндра.

Червячные колеса нарезают на зубофрезерном станке двумя методами:

С радиальной подачей колеса;

С тангенциальной подачей инструмента (рис. 13).

В обоих случаях фреза должна по размерам строго соответствовать червяку, с которым будет работать нарезанное колесо. Нарезание методом радиальной подачей червячной фрезой более производительно, но хуже по точности (межцентровое расстояние при нарезании непостоянно). Для метода тангенциальной подачи используется фреза червячная тангенциальная, снабженная заборным конусом.

Зубодолбление. Операцию зубодолбления круглыми долбяками выполняют на зубодолбежном станке, работающим методом обкатки. В процессе нарезания главным рабочим движением является возвратно-поступательные ходы долбяка, а движения обкатки (оно же движение подачи) - вращение (поворачивание) заготовки, согласованное с вращением (поворачиванием) долбяка (имитация зацепления пары колес) (рис. 14).

Инструмент - долбяк, представляет собой режущее колесо с эволвентными зубьями. По конструктивному оформлению корпуса различают долбяки дисковые, чашечные, втулочные и хвостовые.

Зубодолбление позволяет нарезать зубья вблизи буртика или зубья блочного колеса, зубофрезерование которых невозможно из-за отсутствия места для выхода червячной фрезы.

Для нарезания косозубого колеса требуется косозубый долбяк и устройство в станке для сообщения долбяку винтового движения.

Мелкие зубья (m<1,5 мм) нарезают в один проход, т.е. зубчатый венец образуется за один оборот заготовки. Более крупные зубья нарезают в два - три прохода. Для автоматического врезания станки снабжают специальными кулачками (двух и трехпроходными).

Долбление круглым долбяком - единственный способ нарезания колес с внутренним зубом.

Зубодолбление аналогично по точности и по производительности зувофрезерованию.

Зубозакругление. Для облегчения ввода зубьев во впадины сопрягаемых колес при перемещении их вдоль своих осей выполняют один из специальных видов обработки торцов зубьев: закругление, снятие фасок и заусенцев.

Зубозакругление выполняется на зубозакругляющих станках разными фрезами.

1. Обработка пальцевой конической фрезой осуществляется с непрерывным делением на каждый зуб колеса. Ось шпинделя фрезы располагается перпендикулярно оси колеса. Шпиндель с фрезой, вращаясь вокруг своей оси, совершает движение вверх и вниз параллельно длине зуба, а колесо непрерывно вращается и закругление зубьев получается в результате совместного движения фрезы и вращения колеса.

Возвратно-поступательное перемещение фрезы вдоль торца зуба обеспечивает бочкообразную форму закругления. В начале обработки деталь подводится к фрезе и в конце отводится от нее.

2. Обработка фрезой трубчатой с внутренней конусной поверхностью с зубьями. Фреза совершает возвратно-поступательное движение вдоль своей оси и зубья ее вводятся в соприкосновение с противоположными профилями смежных зубьев, закругляя их торцы. При обратном ходе фрезы колесо поворачивается на один зуб и весь цикл повторяется.

Снятие фасок и заусенцев выполняется аналогичными способами пальцевыми фрезами или абразивным инструментом.

Шевингование - процесс тонкой обработки зубьев колес с твердостью HRC<40, осуществляемый инструментом - шевером, представляющим собой колесо с косыми зубьями, в которых прорезаны поперечные канавки (рис. 15). Края этих канавок служат режущими кромками - в процессе обработки они соскабливают с поверхности зубьев колеса очень тонкую стружку (0,05-0,01 мм).

Шевингованием обрабатывают колеса с прямым и косым зубом, многовенцовые блоки колес. Для обработки зубья колес вводят в зацепление с зубьями шевера. Условия зацепления должны выть такими, чтобы существовало взаимное давление и относительное скольжение зубьев. Шевер с косыми зубьями получает принудительное вращение и вращает колесо, свободно установленное в центрах станка на оправке. Скрещивание осей обуславливает продольное относительное скольжение зубьев шевера вдоль всей поверхности зуба, для этого столу станка сообщается продольная подача. В конце хода стол получает поперечную (вертикальную) подачу. Время обработки одного зуба 2-3 секунды. Шевингование повышает точность колес на одну степень точности. Обычно обработкой, предшествующей шевингованию, служит зубофрезерование (зубодолбление), проводимое на втором этапе. В таких случаях шевингованием на третьем этапе получают колеса 6-ой степени точности.

Шевингование неприменимо для колес, зубьям которых придана высокая поверхностная твердость.

Зубошлифование. Зубошлифованием обрабатывают ответственные колеса с цементированными или азотированными зубьями. Зубошлифование осуществляется, чаще всего, на зубошлифовальных станках, работающих червячным шлифовальным (абразивным) кругом (рис. 16). Схемы работы подобны схеме зубофрезерования, но скорости движении соответствуют требуемым для шлифования. Метод зубошлифования обеспечивает высокую производительность и позволяет получить на третьем этапе колеса 6-ой степени точности.

Рис. 16. Схема зубошлифования.

Притирание , как и зубошлифование, служит для отделки зубьев, имеющих высокую поверхностную твердость. Однако в отличие от шлифования притиранием можно снимать очень небольшой слои металла. Поэтому припуск на притирание (0,01-0,04 мм на толщину зуба) обеспечивают за счет некоторой части допуска на окончательную толщину зуба. Наилучшей операцией, перед притиранием, является шевингование зубьев (до термообработки), сочетающее высокую точность с большой производительностью. Такой комплекс операций во многих случаях позволяет отказаться от шлифования - и тем самым резко повысить производительность на окончательном этапе обработки детали. Притирание осуществляется на третьем, четвертом этапе и позволяет получить колеса 6-5 степени точности 8-10 класса шероховатости.

В качестве притиров используют точные чугунные колеса с прямыми или косыми зубьями. Существуют станки, работающие тремя притирами (один прямозубый и два косозубых с разными направлениями спирали, рис. 17) и одним притиром (косозубым или прямозубым). Скрещивание осей притира и колеса (обычно под углом 10-15°) вызывает при вращении их относительное продольное скольжение зубьев. Кроме того, предусматривают осевое перемещение колеса.

Производительность притирания в нормальных условиях очень большая (в среднем 3-6 секунды на один зуб). Как и при всяком притирании, оно сильно зависит от зернистости и химической активности применяемого притирочного состава. В случае повышения припуска производительность резко падает.

Значительно большие припуска (до 0,2 мм) позволяет снимать сходный по кинематике с притиранием процесс обработки не чугунным, а абразивным зубчатым колесом, называемый зубохонингованием и применяемый для сравнительно неточных колес.

Шлифование зубьев увеличивает точность незакаливаемых и в особенности закаливаемых зубчатых колес, которые деформируются при термической обработки.уводитсяк инструменту в положение Б, снова включается i и отделывается вторая сторона зубьев.

Шлифование зубьев с эвольвентным профилем производится: методом копирования при помощи фасонного круга с эвольвентным профилем; 2) методом обкатки.

Станки, работающие по методу копирования, производят шлифование кругом, профиль которого соответствует впадине к, аналогично дисковой модульной фрезе. Круг заправляется особым копировальным механизмом при помощи трех алмазов (рис. 12, а).

Круг шлифует две стороны двух соседних зубьев. Для зубчатых колес с различными модулями и количеством зубьев надо иметь отдельные шаблоны для заправки круга алмазами. Такие станки применяются в массовом и крупносерийном, а иногда и в среднесерийном производствах.

Рис. 13. Зубошлифование

а - заправка тремя алмазами профиля шлифовального круга, работающего методом копирования; б - обработка двумя тарельчатыми шлифовальными кругами методом обкатывания.

При шлифовании зубьев по методу копирования в случае зубчаты колес с большим числом зубьев имеет место значительный износ шлифовального круга; если зубья шлифуются последовательно, то межи первым и последним зубьями будет получаться наибольшая ошибка; дли предотвращения этого рекомендуется повертывать зубчатое колесо не на один зуб, а на несколько; тогда влияние изнашивания шлифовального круга не будет давать большой ошибки между соседними зубьями Достигаемая этим методом точность 0,010-0,015 мм.

Станки, работающие по методу копирования, получили довольно широкое распространение благодаря значительно большой производительности по сравнению со станками, работающими по методу обкатки; однако эти станки дают меньшую точность. Основное время при зубошлифовании методом копирования определяется по формуле:

Длина хода стола, мм; число ходов; а - коэффициент, учитывающий время деления, т. е. поворота зубчатого колеса назуб (а = 1,3 - 1,5); г - число зубьев зубчатого колеса; - скорость возвратно-поступательного движения стола в м"мин. Длина хода стола L определяется по формуле:

где - длина шлифуемого зуба, мм; зуба зубчатого колеса в мм, h - высота зуба зубчатого колеса в мм; D K - диаметр круга в мм.

Второй метод шлифования зубьев - метод обкатки - менее производителен, но дает большую точность (до 0,0025 мм); шлифование производится одним или двумя кругами.

Распространенный способ шлифования зубьев методом обкатки осуществляется на зубошлифовальных станках с двумя тарельчатыми кругами, расположенными один по отношению к другому под углом 30 и 40° или образующими как бы профиль расчетного зуба, по котором и происходит обкатка зубчатого колеса (рис. 12, б). В процессе работы шлифуемое зубчатое колесо перемещается в направлении, перпендикулярном своей оси, одновременно поворачиваясь вокруг этой оси.


Помимо этого, шлифуемое зубчатое колесо имеет возвратно-поступательное движение вдоль своей оси, что обеспечивает шлифование профиля зуба по всей его длине.

Притирка (ляппинг-процесс) широко применяется для чистовой, окончательной отделки зубьев после их термической обработки вместо шлифования, которое является операцией сравнительно малопроизводительной. Притирка получила большое распространение в тех отраслях машиностроения, где требуется изготовление точных зубчатых колес (автомобилестроение и др.)- Процесс притирки заключается в том, что обрабатываемое зубчатое колесо вращается в зацеплении с чугунными шестернями-притирами, приводимьши во вращение и смазываемыми пастой, состоящей из смеси мелкого абразивного порошка с маслом. Помимо этого обрабатываемое зубчатое колесо и притиры имеют в осевом направлении возвратно-поступательное движение друг относительно друга: такое движение ускоряет процесс обработки и повышает ее точность. Большей частью движение в осевом направлении придается притираемому зубчатому колесу. Притирочные станки изготовляются с параллельными (рис. 13, а) и со скрещивающимися (рис. 13, б) осями притиров. Наибольшее распространение получили притирочные станки, работающие со скрещивающимися осями притиров, устанавливаемых под разными углами; один притир часто устанавливается параллельно оси обрабатываемого зубчатого колеса. При таком расположении притиров зубчатое колесо работает, как в винтовой передаче, и путем дополнительного осевого перемещения притираемого зубчатого колеса притирка происходит равномерно по всей боковой поверхности зуба. Притираемое зубчатое колесо получает вращение попеременно в обе стороны для равномерной притирки обеих сторон зуба, а необходимое давление на боковой поверхности зубьев во время притирки создается гидравлическими тормозами, действующими на шпиндели притиров.

Иногда применяют притирку зубьев зубчатых колес чугунным червячным притиром диаметром 300-400 мм, используя для этого зубофрезерные станки.

Рис. 13. Схемы притирки зубьев цилиндрических зубчатых колес:

а - с параллельными осями притирок; б - со скрещивающимися осями

притирок

Притирка дает поверхности высокого качества, она сглаживает микронеровности и придает зеркальный блеск поверхности, значительно уменьшая шум и увеличивая плавность работы зубчатых колес.

Она дает лучшую по качеству поверхность зубьев, чем шлифование, но при условии правильного изготовления зубчатого колеса, так как притиркой можно исправить лишь незначительные погрешности; при наличии же значительных погрешностей зубчатые колеса необходимо сначала шлифовать, а затем притирать.

Приработка зубьев отличается от притирки тем, что притирается не зубчатое колесо с притиром, а два парных зубчатых колеса, изготовленных для совместной работы в собранной машине. Приработка производится при помощи абразивного материала, который ускоряет взаимную приработку зубьев зубчатых колес и придает им гладкую поверхность.

Из вышеизложенного можно сделать вывод, что наиболее производигельным и рациональным способом получения точных зубьев является шевингование, применяемое после нарезания зуба, но до термической обработки. После него для исправления небольших искажений в профиле и шаге и получения чистовой поверхности зубьев целесообразно применить притирку и только в случае значительной деформации прибегать к шлифованию зубьев.

Сборка редуктора цилиндрического одноступенчатого с косозубыми колесами . Базовой деталью сборочной единицы редуктора является его корпус, который для сборки выверяют в горизонтальной плоскости с точностью до 0,1 мм на длине 1000 мм с помощью контрольной линейки и уровня, уложенных на поверхность разъема. Как правило, редукторы имеют плоскость разъема по оси валов, что обеспечивает хорошие условия сборки (рис. 76).

Рис. 76.
Редуктор цилиндрический одноступенчатый с косозубыми колесами

В корпус редуктора 6 первым устанавливают собранный ведомый вал 19 с колесом 9 и двумя роликоподшипниками 16 и набором регулировочных колец 8, устанавливаемых между торцом наружного кольца подшипника и закладными крышками 7 и 17. Выходные концы валов уплотняют манжетами 18.

Подобным образом собирают вал-шестерню 15 с коническими роликоподшипниками 14 и регулировочными кольцами 13 закладной крышкой 12; уплотняют манжетой 10 и закрывают крышкой 11. Плоскости разъема корпуса и крышки 2 при сборке покрывают пастой «герметика» для обеспечения плотности; затем ставят болты и конический штифт 5.

Для осмотра зубьев зацепления и залива масла при сборке в крышке имеется смотровое окно, закрываемое крышкой 1. Для залива масла при эксплуатации имеется отверстие, закрываемое пробкой 3. Для циркуляционной смазки установлено сопло 4 (при смазке колес погружением сопло отсутствует). Масло сливается через отверстие в нижней части корпуса, закрываемое пробкой 20. Для контроля уровня масла служит контрольная пробка 21.

Приработка зубчатых передач . Приработку передач делают для исправления неправильного пятна касания, т. е. для увеличения площади контакта по длине и высоте зубьев до размеров, требуемых техническими условиями, для уменьшения шероховатости рабочих поверхностей зубьев, уменьшения шума и увеличения долговечности зубчатых передач. В процессе приработки поверхности зубьев подвергаются взаимному шлифованию абразивными пастами, помещаемыми между зубьями.

Для приработки применяют абразивные пасты и пасты ГОИ. Зернистость пасты выбирают в зависимости от степени точности, твердости поверхности зуба и модуля зубчатого зацепления. Для приработки зубья колеса покрывают тонким сплошным слоем абразивной пасты и с помощью электродвигателя, соединенного с ведущим валом редуктора, дают пробную приработку с частотой вращения 20 - 30 об/мин в интервале 5 - 10 мин. Удалив с нескольких зубьев пасту, проверяют состояние их рабочих поверхностей. Отсутствие задиров и других дефектов, а также появление следов контакта свидетельствует о нормальном протекании процесса. В дальнейшем приработку ведут с постепенным повышением тормозного момента на выходном валу редуктора.

Процесс приработки через каждые 30 мин прерывают, чтобы осмотреть состояние поверхностей зубьев, определить величину пятна касания и заменить отработанную пасту новой.

После удаления абразивной пасты Зубчатые передачи обкатывают в течение 1,5 - 2 ч, подавая на зубья масло индустриальное 12, что позволяет полностью удалить зерна абразива и получить гладкую блестящую поверхность зубьев, характеризующую окончательную площадь пятна контакта. Если зубчатая пара имеет кратное число зубьев, то один зуб шестерни и два соседних с ним зуба колеса с торцов маркируют (например, буквой О), чтобы в процессе монтажа приработанные зубья совпали. Для зубчатых пар с некратным числом зубьев маркировку не делают, так как каждый зуб колеса прирабатывается ко всем зубьям шестерни.

Сборка конических зубчатых передач . Конические передачи применяются для передачи вращения между валами, оси которых пересекаются под углом (рис. 77, а), как правило, равным 90°. Зубья конических зубчатых колес в идеальном случае касаются друг друга всей рабочей поверхностью (принимая за рабочую поверхность узкую полосу вдоль всей линии зуба), практически в соприкосновении находится от 1/2 до 3/4 длины зуба.

Рис. 77.
Схема конической зубчатой передачи (а), проверка перпендикулярности осей колес (б), проверка совмещения осей (в)

Основные размеры конического зубчатого колеса обычно рассматриваются во внешнем сечении, где зуб имеет наибольшие размеры на поверхности дополнительного конуса (внешний делительный Диаметр d e = mz l , диаметр вершин зубьев d ae = m(z + 2aSδ), где δ - угол делительного конуса - угол между осью конического колеса и образующей его делительного конуса, рис. 77, а). Они могут рассматриваться и в любом другом сечении (среднем, внутреннем и др.).

Требования, предъявляемые к коническим зубчатым передачам, как и приемы их сборки и установки на валу, такие же, как и цилиндрических зубчатых колес.

Пригонку колес целесообразно вести так, чтобы зубья соприкасались рабочей поверхностью ближе к тонким концам, так как тонкая сторона быстрее прирабатывается и при нагружении вследствие деформации тонкого конца зубьев достигается их прилегание на всей длине.

Перед установкой зубчатых колес проверяют межосевой угол и смещение осей. Перпендикулярность осей проверяют цилиндрической оправкой 1 (рис. 77,б) и оправкой 2, имеющей два выступа, плоскости которых перпендикулярны оси. Щупом замеряют зазор между выступами. Совмещение осей проверяют оправками, аналогичными оправкам 1 и 2 со срезанными до половины концами (рис. 77, в). При совмещении оправок щупом замеряют зазор С между ними.

Напрессованные колеса проверяют на биение венца, монтируют передачу и добиваются совпадения воображаемых вершин конусов. Предварительную установку делают по торцам колес. Зацепление регулируют смещением зубчатых колес в осевом направлении, пока не получатся одинаковые боковой Сn и радиальный σ зазоры по всей окружности. Смещать можно или одно колесо, или оба. Найденное правильное положение колес фиксируют набором прокладок или регулировочными кольцами, закладываемыми между торцом колеса и уступом вала. При наличии радиально-упорных подшипников с регулировочными прокладками зацепление регулируют смещением вала вместе с колесом. Чтобы не нарушить при этом зазоров в подшипниках, для смещения колес из-под одного подшипника прокладки вынимают и перекладывают их к противоположному подшипнику.

Правильность зацепления проверяют на краску. На зубья одного колеса наносят краску и прокатывают колеса до получения отпечатка. При расположении отпечатка не по центру зуба зацепление регулируют.

Если зубчатое колесо (рис. 78), сидящее на оси II - II, сдвинуть влево - в направлении вершины начального конуса, то зазоры в зацеплении уменьшатся. Если боковой зазор нельзя измерить щупом из-за затрудненного подхода к передаче, то пользуются тонкими свинцовыми пластинками, толщина которых в 1,5 раза превышает величину требуемого зазора. Для этого отмечают мелом три зуба, равномерно расположенных по окружности и вставляют между ними свинцовые пластинки. Затем вращают один из валов. Сжимаясь между зубьями, пластинки расплющиваются. Измерив микрометром толщину каждой пластинки и вычислив среднее арифметическое трех измерений, получают значение бокового зазора.

Рис. 78.
Проверка и регулировка зазора сдвигом колес вдоль осей

Регулировка зацепления на краску по характеру пятна контакта состоит в следующем. Зубья одного колеса смазывают тонким слоем краски и оба колеса провертывают на 2 - 3 оборота. На зубьях колеса, не смазанного краской, получается отпечаток, по которому судят о зацеплении. Величина пятна зависит от класса точности передачи и должна составлять 40 - 60% длины зуба и 20 - 25% высоты рабочей части (рис. 79, а - г).

Рис. 79.
Расположение пятен контакта при проверке на краску:
а - правильное зацепление, б - недостаточный зазор, в, г - неправильный межосевой угол

Если следы краски расположены плотно на одной стороне зуба на узком конце, а на другой стороне - на широком конце, то это свидетельствует о перекосе зубчатых колес. Эти погрешности должны быть исправлены путем дополнительных пригоночных операций. Передачу разбирают и проверяют, правильно ли установлены зубчатые колеса на валах и положение оцей в корпусе.

Требуемое пятно контакта в конических передачах получают приработкой с абразивными пастами, как и для цилиндрических передач.

Сборка червячных передач . Червячные передачи применяют для передачи вращения между двумя валами, перекрещивающимися под углом 90°, и для получения большого передаточного числа. Обычно передача осуществляется от червяка к колесу. Червячная передача состоит из червяка 1 - винта с модульной трапецеидальной резьбой (угол профиля 40°) и червячного колеса 2 (рис. 80, а).


Рис. 80. Червячная передача: а - общий вид; б - элементы поредачи; в - червяк вогнутой формы

Передаточное число червячной передачи - отношение числа зубьев колеса z 2 к числу заходов червяка z 1 ,т. е. u = z 2 /z 1 .

Для червячных передач ГОСТ 2144 - 66 предусматривает передаточные числа от 8 до 80. Червячные передачи имеют сравнительно невысокий к. п. д.

Червяки могут быть однозаходными и многозаходными и выполняться заодно с валом либо насадными, изготовляемыми отдельно и крепящимися на валу с помощью шпонок.

Расстояние между соседними витками червяка - шаг Р (рис. 80, б). Делительный диаметр червяка d = qm, где q - коэффициент диаметра червяка (q = 7,1 - 2,5).

Червячное колесо имеет вогнутые зубья спиральной формы. В осевом сечении у него те же элементы и геометрические зависимости, как и у цилиндрического зубчатого колеса. Червяк изготовляется из сталей 40, 45, 40Х, 40ХН с последующей закалкой (лучше токами высокой частоты) или цементируемых сталей 15Х, 20Х, 20ХНЗА, 20ХФ и др. Витки червяков шлифуются.

Червячные колеса для повышения к. п. д. передачи выполняются из бронзы Бр.ОФЮ-1, Бр.ОНФ, Бр.АЖ9-4. Колеса тихоходных передач изготовляют из чугуна. Для экономии дорогих бронз из них изготовляют только венец. Его напрессовывают на чугунную или стальную ступицу и крепят винтами или болтами.

Помимо червячных передач, у которых червяк имеет прямолинейную образующую делительного цилиндра (архимедовы червяки), имеются передачи с эвольвентными червяками (у них профиль витков эвольвентный), а также глобоидные передачи с червяками вогнутой формы (рис. 80, в).

К червячным передачам предъявляются следующие технические требования:

  1. Профиль и шаг резьбы червячного колеса и червяка должны соответствовать друг другу.
  2. Червяк должен соприкасаться с каждым зубом червячного колеса на протяжении не менее 2/3 длины дуги зуба червячного колеса.
  3. Радиальное и торцовое биение червячного колеса не должно выходить за пределы норм, установленных для соответствующих степеней точности.
  4. Межосеьые расстояния должны соответствовать расчетной величине, обеспечивая необходимый зазор, установленный для соответствующего класса передач.
  5. Оси скрещивающихся валов должны располагаться под углом 90° друг к другу и совпадать с соответствующими осями гнезд в корпусах.
  6. Собранные передачи испытываются на холостом ходу (или под нагрузкой).
  7. Величина мертвого хода червяка (угол поворота червяка при неподвижном закреплении колеса) должна быть не выше установленных норм для соответствующего класса передач; при проверке на легкость проворачивания червяка добиваются, чтобы крутящий момент находился в пределах, допустимых техническими требованиями.
  8. Во время испытания собранной передачи под нагрузкой проверяют плавность хода и нагрев подшипниковых опор, который должен быть не выше 323 - 333 К (50 - 60 °С).
  9. При проверке передачи должны работать плавно и бесшумно.

Сборку червячной передачи начинают с проверки межосевых расстояний корпуса редуктора. Способ контроля межосевых расстояний показан на рис. 81, а. В корпус устанавливают контрольные оправки 1 и 2. На одну из них устанавливают шаблон 3 с тремя выступами. По величине зазора между выступом шаблона и оправкой 1 определяют отклонение межосевого расстояния.

Рис. 81.
Способы контроля отверстий в корпусе червячной передачи:
а - межосевого расстояния, б - перекоса осей (угол скрещивания)

Способы контроля перекоса осей (угол скрещивания) показаны на рис. 81,б.

  1. Проверяют оправками и шаблоном, как и межосевое расстояние. Замеряют зазор 5 между выступами шаблона и берут разность показаний. Величина перекоса по ширине колеса получится умножением полученной разности на отношение размеров ширины колеса к расстоянию между выступами.
  2. На вал червячного колеса или оправку надевают рычаг 4 с индикатором 5. Подводя штифт индикатора попеременно к левому и правому концам вала червяка или оправки, по разности отклонения судят о перекосе осей.

На рис. 82 (слева) показана сборка червячного колеса 1, закрепленного на призматической шпонке 2, и дополнительно с обеих сторон гайками 3 и 4, которыми регулируют положение средней плоскости колеса (ослабляя одну или подтягивая другую). На рис. 82 (справа) ступицу колеса I зажимают распорными втулками 5 и 6, а по торцам устанавливают компенсаторные кольца 7 и 8 различной толщины. Меняя эти кольца, добиваются сдвига колеса в ту или иную сторону.

Рис. 82.
Приемы сборки и виды брака при сборке:
а - закрепление червячных колес на валах, б - перекос колеса, в - сдвиг колеса

При сборке зубчатого колеса может быть перекос (рис. 82,б) или сдвиг колеса по оси (рис. 82, в).

Проверка и регулировка червячных передач . Проверка установки червяка по отношению к червячному колесу. Правильность установки червячного колеса по отношению к червяку проверяют с помощью специальных шаблонов и щупов, отвесов и масштабной линейки или точной линейки, призмы и уровня. Выполняют это следующими способами.

  1. К ободу червячного колеса (рис. 83, а) прикладывают специальный шаблон A и щупом замеряют зазор С между шаблоном и витками червяка.

Рис. 83.
Способы контроля качества сборки червячных передач:
а - специальным шаблоном, б - отвесом, в - специальной линейкой по отпечатку на краску, г - передача собрана правильно, д - ось пары смещена вправо, е - ось пары смещена влево

  1. От вала червяка (рис. 83,б) опускают отвесы О и нутромером замеряют расстояние С, которое с обеих сторон червяка должно быть одинаковым.
  2. При горизонтальном положении червячного колеса 1 по отношению к червяку 4 (рис. 83,б) установку колеса проверяют с помощью точной линейки 3, специально изготовленной призмы и уровня 2. Для правильной установки между линейкой и торцом колеса помещают мерную прокладку 5.

В собранной передаче правильность установки червячной передачи контролируют по краске. Если передача собрана правильно (рис. 83, г), то краска покрывает зуб. колеса не менее чем на 50 - 60 % по длине и высоте. Если червяк смещен относительно колеса вправо или влево (рис. 81, д, е), то отпечатки получаются неправильными (неполными). В таких случаях колесо сдвигают в соответствующую сторону и надежно закрепляют.

Проверка бокового зазора . Важное значение для нормальной работы червячной передачи имеет зазор С n (рис. 84, а) в зацеплении червяка с колесом. Величина этого зазора зависит от точности и размеров передачи. В собранных передачах зазор определяют по повороту червяка при мертвом ходе. Если червяк повернется на угол φ, то при числе заходов червяка, равном z 1 , и осевом модуле колеса m зазор в зацеплении будет составлять (мкм): C n = φmz1/412.

Рис. 84.
Боковой зазор в червячной передаче (а), схема проверки его индикатором (б)

В малогабаритных точных передачах, где боковой зазор весьма мал, свободный поворот червяка определяют индикаторами по схеме, приведенной на рис. 84, б. На выступающих концах червяка и колеса крепят рычаги 7 и 2, касающиеся индикаторов 3 и 4, замечают положение стрелки индикатора 4 (следовательно, и червяка) в начальном положении, а затем червяк слегка повертывают до начала отклонения рычага 2, при этом значение угла φ (в угловых секундах) равно показанию индикатора 3 (разность между конечным и начальным значениями), умноженному на L: 3600 (L - расстояние от оси червяка до шарика индикатора).

Контрольные вопросы

  1. Что такое передаточное число?
  2. С какой целью выполняют балансировку деталей?
  3. Какие виды передач вращательного движения применяют в машинах и механизмах?
  4. Как контролируют сборку зубчатой передачи?


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта