Главная » Аккумулятор » Как изготовить мощный высоковольтный генератор импульсов. Высоковольтные генераторы с индуктивными накопителями энергии

Как изготовить мощный высоковольтный генератор импульсов. Высоковольтные генераторы с индуктивными накопителями энергии

Генераторы прямоугольных импульсов широко используются в радиотехнике, телевидении, системах автоматического управления и вычислительной технике.

Для получения импульсов прямоугольной формы с крутыми фронтами широко применяются устройства, принцип работы которых основан на использовании электронных усилителей с положительной обратной связью. К этим устройствам относятся так называемые релаксационные генераторы – мультивибраторы, блокинг-генераторы. Эти генераторы могут работать в одном из следующих режимов: ждущем, автоколебательном, синхронизации и деления частоты.

В ждущем режиме генератор имеет одно устойчивое состояние равновесия. Внешний запускающий импульс вызывает скачкообразный переход ждущего генератора в новое состояние, которое не является устойчивым. В этом состоянии, называемом квазиравновесным, или временно устойчивым, в схеме генератора происходят относительно медленные процессы, которые в конечном итоге приводят к обратному скачку, после чего устанавливается устойчивое исходное состояние. Длительность состояния квазиравновесия, определяющая длительность генерируемого прямоугольного импульса, зависит от параметров схемы генератора. Основными требованиями к ждущим генераторам является стабильность длительности формируемого импульса и устойчивость его исходного состояния. Ждущие генераторы применяются, прежде всего, для получения определенного временного интервала, начало и конец которого фиксируются соответственно фронтом и спадом генерируемого прямоугольного импульса, а также для расширения импульсов, для деления частоты повторения импульсов и других целей.

В автоколебательном режиме генератор имеет два состояния квазиравновесия и не имеет ни одного устойчивого состояния. В этом режиме без какого-либо внешнего воздействия генератор последовательно переходит скачком из одного состояния квазиравновесия в другое. При этом генерируются импульсы, амплитуда, длительность и частота повторения которых определяются в основном только параметрами генератора. Основным требованием, предъявляемым к таким генераторам, является высокая стабильность частоты автоколебаний. Между тем в результате изменения питающих напряжений, смены и старения элементов, воздействия других факторов (температуры, влажности, наводок и т. п.) стабильность частоты автоколебаний генератора обычно невелика.

В режиме синхронизации или деления частоты частота повторения генерируемых импульсов определяется частотой внешнего синхронизирующего напряжения (синусоидального или импульсного), подаваемого в схему генератора. Частота повторения импульсов равна или кратна частоте синхронизирующего напряжения.

Генератор периодически повторяющихся прямоугольных импульсов релаксационного типа называется мультивибратором.

Схема мультивибратора может быть реализована как на дискретных элементах, так и в интегральном исполнении.

Мультивибратор на дискретных элементах. В таком мультивибраторе используют два усилительных каскада, охваченных обратной связью. Одна ветвь обратной связи образована конденсатором и резистором, а другая – и (рис. 6.16).

состояний и обеспечивает генерирование периодически повторяющихся импульсов, форма которых близка прямоугольной.

В мультивибраторе оба транзистора могут находиться в активном режиме очень короткое время, так как в результате действия положительной обратной связи схема скачком переходит в состояние, когда один транзистор открыт, а другой закрыт.

Примем для определенности, что в момент времени транзисторVT 1 открыт и насыщен, а транзисторVT 2 закрыт (рис. 6.17). Конденсаторза счет тока, протекавшего в схеме в предшествующие моменты времени, заряжен до определенного напряжения. Полярность этого напряжения такова, что к базе транзистораVT 2 относительно эмиттера приложено отрицательное напряжение иVT 2 закрыт. Поскольку один транзистор закрыт, а другой открыт и насыщен, в схеме не выполняется условие самовозбуждения, так как коэффициенты усиления каскадов
.

В таком состоянии в схеме протекают два процесса. Один процесс связан с протеканием тока перезаряда конденсатора от источника питания по цепи резистор – открытый транзистор VT 1 .Второй процесс обусловлен зарядом конденсатора через резистор
и базовую цепь транзистораVT 1 , в результате напряжение на коллекторе транзистора VT 2 увеличивается (рис. 6.17). Поскольку резистор, включаемый в базовую цепь транзистора, имеет большее сопротивление, чем коллекторный резистор (
), время заряда конденсатора меньше времени перезаряда конденсатора.

Процесс заряда конденсатора носит экспоненциальный характер с постоянной времени
. Следовательно, время заряда конденсатора , а также время нарастания коллекторного напряжения
, т. е. длительность фронта импульса
. За это время конденсатор заряжается донапряжения
.В связи с перезарядом конденсатора напряжение на базе
транзистораVT 2 нарастает, но пока
транзисторVT 2 закрыт, а транзистор VT 1

открыт, поскольку его база оказывается подключенной к положительному полюсу источника питания через резистор .

Базовое
и коллекторное
напряжения транзистораVT 1 при этом не изменяются. Это состояние схемы называется квазиустойчивым.

В момент времени по мере перезаряда конденсатора напряжение на базе транзистора VT 2 достигает напряжения открывания и транзистор VT 2 переходит в активный режим работы, для которого
. При открывании VT 2 увеличивается коллекторный ток и соответственно уменьшается
. Уменьшение
вызывает снижение базового тока транзистораVT 1 , что, в свою очередь, приводит к уменьшению коллекторного тока . Снижение токасопровождается увеличением базового тока транзистораVT 2 , поскольку ток, протекающий через резистор
, ответвляется в базу транзистораVT 2 и
.

После того как транзистор VT 1 выйдет из режима насыщения, в схеме выполняется условие самовозбуждения:
. При этом процесс переключения схемы протекает лавинообразно и заканчивается, когда транзистор VT 2 переходит в режим насыщения, а транзистор VT 1 – в режим отсечки.

В дальнейшем практически разряженный конденсатор (
) заряжается от источника питания по цепи резистор
– базовая цепь открытого транзистора VT 2 по экспоненциальному закону с постоянной времени
. В результате в течение времени
происходит увеличение напряжения на конденсаторе до
и формируется фронт коллекторного напряжения
транзистораVT 1 .

Закрытое состояние транзистора VT 1 обеспечивается тем, что первоначально заряженный до напряжения конденсатор через открытый транзисторVT 2 подключен к промежутку база – эмиттер транзистора VT 1 , чем поддерживается отрицательное напряжение на его базе. С течением времени запирающее напряжение на базе изменяется, поскольку конденсатор перезаряжается по цепи резистор – открытый транзистор VT 2 . В момент времени напряжение на базе транзистора VT 1 достигает значения
и он открывается.

В схеме снова выполняется условие самовозбуждения и развивается регенеративный процесс, в результате которого транзистор VT 1 переходит в режим насыщения, а VT 2 закрывается. Конденсатор оказывается заряженным до напряжения
, а конденсатор практически разряжен(
). Это соответствует моменту времени , с которого началось рассмотрение процессов в схеме. На этом полный цикл работы мультивибратора заканчивается, так как в дальнейшем процессы в схеме повторяются.

Как следует из временной диаграммы (рис. 6.17), в мультивибраторе периодически повторяющиеся импульсы прямоугольной формы можно снимать с коллекторов обоих транзисторов. В случае, когда нагрузка подключается к коллектору транзистора VT 2 , длительность импульсов определяется процессом перезаряда конденсатора , а длительность паузы – процессом перезаряда конденсатора .

Цепь перезаряда конденсатора содержит один реактивный элемент, поэтому , где
;
;.

Таким образом, .

Процесс перезаряда заканчивается в момент времени, когда
. Следовательно, длительность положительного импульса коллекторного напряжения транзистораVT 2 определяется формулой:

.

В том случае, когда мультивибратор выполнен на германиевых транзисторах, формула упрощается , поскольку
.

Процесс перезаряда конденсатора , который определяет длительность паузымежду импульсами коллекторного напряжения транзистораVT 2 , протекает в такой же эквивалентной схеме и при тех же условиях, что и процесс перезаряда конденсатора , только с другой постоянной времени:
. Поэтому формула для расчета аналогична формуле для расчета:

.

Обычно в мультивибраторе длительность импульса и длительность паузы регулируют, изменяя сопротивление резисторов и.

Длительности фронтов зависят от времени открывания транзисторов и определяются временем заряда конденсатора через коллекторный резистор того же плеча
. При расчете мультивибратора необходимо выполнить условие насыщения открытого транзистора
. Для транзистораVT 2 без учета тока
перезаряда конденсатораток
. Следовательно, для транзистораVT 1 условие насыщения
, а для транзистораVT 2 -
.

Частота генерируемых импульсов
. Основным препятствием увеличения частоты генерирования импульсов является большая длительность фронта импульсов. Снижение длительности фронта импульса за счет уменьшения сопротивлений коллекторных резисторов может привести к невыполнению условия насыщения.

При большой степени насыщения в рассмотренной схеме мультивибратора возможны случаи, когда после включении оба транзистора насыщены и колебания отсутствуют. Это соответствует жесткому режиму самовозбуждения. Для предотвращения этого следует выбирать режим работы открытого транзистора вблизи границы насыщения, чтобы сохранить достаточный коэффициент усиления в цепи обратной связи, а также использовать специальные схемы мультивибраторов.

Если длительность импульса равна длительности, что обычно достигается при , то такой мультивибратор называетсясимметричным.

Длительность фронта генерируемых мультивибратором импульсов можно существенно уменьшить, если дополнительно ввести в схему диоды (рис. 6.18).

Когда, например, закрывается транзистор VT 2 и начинает увеличиваться коллекторное напряжение, то к диоду VD 2 прикладывается обратное напряжение, он закрывается и тем самым отключает заряжающийся конденсатор от коллектора транзистораVT 2 . В результате ток заряда конденсатора протекает уже не через резистор, а через резистор . Следовательно, длительность фронта импульса коллекторного напряжения
теперь определяется только процессом закрывания транзистора VT 2 . Аналогично работает и диод VD 1 при заряде конденсатора .

Хотя в такой схеме длительность фронта существенно уменьшена, время заряда конденсаторов, которое ограничивает скважность импульсов, практически не изменяется. Постоянные времени
и
не могут быть уменьшены за счет снижения. Резисторв открытом состоянии транзистора через открытый диод подключается параллельно резистору .В результате при
возрастает потребляемая схемой мощность.

Мультивибратор на интегральных схемах (рис. 6.19).Простейшая схема содержит два инвертирующих логических элемента ЛЭ1 и ЛЭ2 , две времязадающие цепочки
и
и диодыVD 1 , VD 2 .

Положим, что в момент времени (рис. 6.20) напряжения
, а
. Если ток через конденсатор не протекает, то напряжение на нем
, а на входе элемента ЛЭ1
. В схеме протекает ток заряда конденсатораотЛЭ1 через резистор .

Напряжение на входе ЛЭ2 по мере заряда конденсатора уменьшается, но пока
,ЛЭ2 находится в состоянии нуля на выходе.

В момент времени
и на выходеЛЭ2
. В результате на вход ЛЭ1 через конденсатор , который заряжен до напряжения
, подается напряжение иЛЭ1 переходит в состояние нуля
. Так как напряжение на выходе ЛЭ1 уменьшилось, то конденсатор начинает разряжаться. В результате на резисторе возникнет напряжение отрицательной полярности, откроется диод VD 2 и конденсатор быстро разрядится до напряжения
. После окончания этого процесса напряжение на входе ЛЭ2
.

Одновременно в схеме протекает процесс заряда конденсатора и с течением времени напряжение на входе ЛЭ1 уменьшается. Когда в момент времени напряжение
,
,
. Процессы начинают повторяться. Опять происходит заряд конденсатора , а конденсатор разряжается через открытый диод VD 1 . Поскольку сопротивление открытого диода намного меньше сопротивления резисторов , и, разряд конденсаторов и происходит быстрее, чем их заряд.

Напряжение на входе ЛЭ1 в интервале времени
определяется процессом заряда конденсатора :, где
;
– выходное сопротивление логического элемента в состоянии единицы;
;
, откуда
. Когда
, заканчивается формирование импульса на выходе элемента ЛЭ2 , следовательно, длительность импульса

.

Длительность паузы между импульсами (интервал времени от до ) определяется процессом заряда конденсатора , поэтому

.

Длительность фронта генерируемых импульсов определяется временем переключения логических элементов.

На временной диаграмме (рис. 6.20) амплитуда выходных импульсов не меняется:
, поскольку при ее построении не учитывалось выходное сопротивление логического элемента. С учетом конечности этого выходного сопротивления амплитуда импульсов будет изменяться.

Недостатком рассмотренной простейшей схемы мультивибратора на логических элементах является жесткий режим самовозбуждения и связанное с этим возможное отсутствие колебательного режима работы. Этот недостаток схемы можно исключить, если дополнительно ввести логический элемент И (рис. 6.21).

Когда мультивибратор генерирует импульсы, то на выходе ЛЭ3
, поскольку
. Однако вследствие жесткого режима самовозбуждения возможен такой случай, когда при включении напряжения источника питания из-за малой скорости нарастания напряжения ток заряда конденсаторов и оказывается небольшим. При этом падение напряжения на резисторах и может быть меньше порогового
и оба элемента(ЛЭ1 и ЛЭ2 ) окажутся в состоянии, когда напряжения на их выходах
. При таком сочетании входных сигналов на выходе элемента ЛЭ3 возникнет напряжение
, которое через резистор подается на вход элемента ЛЭ2 . Так как
, то ЛЭ2 переводится в состояние нуля и схема начинает генерировать импульсы.

Для построения генераторов прямоугольных импульсов наряду с дискретными элементами и ЛЭ в интегральном исполнении используются операционные усилители.

Мультивибратор на операционном усилителе имеет две цепи обратной связи (рис. 6.22). Цепь обратной связи неинвертирующего входа образована двумя резисторами ( и ) и, следовательно,
. Обратная связь по инвертирующему входу образована цепочкой
,

поэтому напряжение на инвертирующем входе
зависит не только от напряжения на выходе усилителя, но и является функцией времени, поскольку
.

Процессы, протекающие в мультивибраторе, рассмотрим, начиная с момента времени (рис. 6.23), когда напряжение на выходе положительное (
). При этом конденсатор в результате процессов, протекавших в предшествующие моменты времени, заряжен таким образом, что к инвертирующему входу приложено отрицательное напряжение.

На неинвертирующем входе действует положительное напряжение
. Напряжение
остается постоянным, а напряжение на инвертирующем входе
с течением времени увеличивается, стремясь к уровню
, поскольку в схеме протекает процесс перезаряда конденсатора .

Однако пока
, состояние усилителя определяет напряжение на неинвертирующем входе и на выходе сохраняется уровень
.

В момент времени напряжения на входах операционного усилителя становятся равными:
. Дальнейшее незначительное увеличение
приводит к тому, что дифференциальное (разностное) напряжение на инвертирующем входе усилителя
оказывается положительным, поэтому напряжение на выходе резко уменьшается и становится отрицательным
. Так как напряжение на выходе операционного усилителя изменило полярность, то конденсатор в дальнейшем перезаряжается и напряжение на нем, а также напряжение на инвертирующем входе стремятся к
.

В момент времени опять
и затем дифференциальное (разностное) напряжение на входе усилителя
становится отрицательным. Так как оно действует на инвертирующем входе, то напряжение на выходе усилителя скачком опять принимает значение
. Напряжение на неинвертирующем входе также скачком изменяется
. Конденсатор , который к моменту времени зарядился до отрицательного напряжения, опять перезаряжается и напряжение на инвертирующем входе возрастает, стремясь к
. Так как при этом
, то напряжение на выходе усилителя сохраняется постоянным. Как следует из временной диаграммы (рис. 6.23), в момент времени полный цикл работы схемы заканчивается и в дальнейшем процессы в ней повторяются. Таким образом, на выходе схемы генерируются периодически повторяющиеся импульсы прямоугольной формы, амплитуда которых при
равна
. Длительность импульсов (интервал времени
) определяется временем перезаряда конденсатора по экспоненциальному закону от
до
с постоянной времени
, где
– выходное сопротивление операционного усилителя. Поскольку во время паузы (интервал
) перезаряд конденсатора происходит в точно таких же условиях, что и при формировании импульсов, то
. Следовательно, схема работает как симметричный мультивибратор.

происходит с постоянной времени
. При отрицательном напряжении на выходе (
) открыт диодVD 2 и постоянная времени перезаряда конденсатора , определяющая длительность паузы,
.

Ждущий мультивибратор или одновибратор имеет одно устойчивое состояние и обеспечивает генерирование прямоугольных импульсов при подаче на вход схемы коротких запускающих импульсов.

Одновибратор на дискретных элементах состоит из двух усилительных каскадов, охваченных положительной обратной связью (рис. 6.25).

Одна ветвь обратной связи, как и в мультивибраторе, образована конденсатором и резистором ; другая – резистором , включенным в общую цепь эмиттеров обоих транзисторов. Благодаря такому включению резистора напряжение база – эмиттер

транзистора VT 1 зависит от коллекторного тока транзистора VT 2 . Такую схему называют одновибратором с эмиттерной связью. Параметры схемы рассчитываются таким образом, чтобы в исходном состоянии в отсутствие входных импульсов транзистор VT 2 был открыт и насыщен, а VT 1 находился в режиме отсечки. Такое состояние схемы, являющееся устойчивым, обеспечивается при выполнении условий:
.

Положим, что одновибратор находится в устойчивом состоянии. Тогда токи и напряжения в схеме будут постоянными. База транзистора VT 2 через резистор подключена к положительному полюсу источника питания, что в принципе обеспечивает открытое состояние транзистора. Для расчета коллекторного
и базового токов имеем систему уравнений

.

Определив отсюда токи
и , условие насыщения запишем в виде:

.

Если учесть, что
и
, тополученное выражение существенно упрощается:
.

На резисторе за счет протекания токов ,
создается падение напряжения
. В результате разность потенциалов между базой и эмиттером транзистораVT 1 определяется выражением:

Если в схеме выполняется условие
, то транзисторVT 1 закрыт. Конденсатор при этом заряжен до напряжения . Полярность напряжения на конденсаторе указана на рис. 6.25.

Положим, что в момент времени (рис. 6.26) на вход схемы поступает импульс , амплитуда которого достаточна для открывания транзистораVT 1 . В результате в схеме начинается процесс открывания транзистора VT 1 сопровождающийся увеличением коллекторного тока и уменьшением коллекторного напряжения
.

Когда транзистор VT 1 открывается, конденсатор оказывается подключенным к области база – эмиттер транзистора VT 2 таким образом, что потенциал базы становится отрицательным и транзистор VT 2 переходит в режим отсечки. Процесс переключения схемы носит лавинообразный характер, поскольку в это время в схеме выполняется условие самовозбуждения. Время переключения схемы определяется длительностью процессов включения транзистора VT 1 и выключения транзистора VT 2 и составляет доли микросекунды.

При закрывании транзистора VT 2 через резистор перестают протекать коллекторный и базовый токи VT 2 . В результате транзистор VT 1 остается в открытом состоянии даже после окончания входного импульса. В это время на резисторе падает напряжение
.

Состояние схемы, когда транзистор VT 1 открыт, а VT 2 закрыт, является квазиустойчивым. Конденсатор через резистор , открытый транзистор VT 1 и резистор оказывается подключенным к источнику питания таким образом, что напряжение на нем имеет встречную полярность. В схеме протекает ток перезаряда конденсатора , и напряжение на нем, а следовательно, и на базе транзистора VT 2 стремится к положительному уровню.

Изменение напряжения
носит экспоненциальный характер:, где
. Начальное напряжение на базе транзистораVT 2 определяется напряжением, до которого первоначально заряжен конденсатор и остаточным напряжением на открытом транзисторе:

Предельное значение напряжения, к которому стремится напряжение на базе транзистора VT 2 , .

Здесь учтено, что через резистор протекает не только ток перезаряда конденсатора , но и ток открытого транзистораVT 1 . Следовательно, .

В момент времени напряжение
достигает напряжения отпирания
и транзисторVT 2 открывается. Появившийся коллекторный ток создает дополнительное падение напряжения на резисторе , что приводит к уменьшению напряжения
. Это вызывает уменьшение базового и коллекторноготоков и соответствующее увеличение напряжения
. Положительное приращение коллекторного напряжения транзистораVT 1 через конденсатор передается в цепь базы транзистора VT 2 и способствует еще большему нарастанию его коллекторного тока . В схеме опять развивается регенеративный процесс, оканчивающийся тем, что транзисторVT 1 закрывается, а транзистор VT 2 переходит в режим насыщения. На этом процесс генерирования импульса заканчивается. Длительность импульса определяется, если положить
: .

После окончания импульса в схеме протекает процесс заряда конденсатора по цепи, состоящей из резисторов
, и эмиттерной цепи открытого транзистора VT 2 . В начальный момент базовый ток транзистораVT 2 равен сумме токов заряда конденсатора : тока , ограниченного сопротивлением резистора
, и тока, протекающего через резистор . По мере заряда конденсатора ток уменьшается и соответственно снижается ток базы транзистораVT 2 , стремясь к стационарному значению, определяемому резистором . В результате в момент открывания транзистора VT 2 падение напряжения на резисторе оказывается больше стационарного значения, что приводит к увеличению отрицательного напряжения на базе транзистора VT 1 . Когда напряжение на конденсаторе достигает значения
схема переходит в исходное состояние. Длительность процесса дозаряда конденсатора , который называется этапом восстановления, определяется соотношением .

Минимальный период повторения импульсов одновибратора
, а максимальная частота
. Если интервал между входными импульсами окажется меньше, то конденсатор не успеет дозарядиться и это приведет к изменению длительности генерируемых импульсов.

Амплитуда генерируемых импульсов определяется разностью напряжений на коллекторе транзистора VT 2 в закрытом и открытом состояниях .

Одновибратор можно реализовать на базе мультивибратора, если одну ветвь обратной связи сделать не емкостной, а резисторной и ввести источник напряжения
(рис. 6.27). Такая схема называется одновибратором с коллекторно-базовыми связями.

К базе транзистора VT 2 приложено отрицательное напряжение и он закрыт. Конденсатор заряжен до напряжения
. В случае германиевых транзисторов
.

Конденсатор , исполняющий роль форсирующего конденсатора, заряжен до напряжения
. Это состояние схемы является устойчивым.

При подаче на базу транзистора VT 2 отпирающего импульса (рис. 6.28) в схеме начинают протекать процессы открывания транзистора VT 2 и закрывания транзистора VT 1 .

При этом выполняется условие самовозбуждения, развивается регенеративный процесс и схема переходит в квазиустойчивое состояние. Транзистор VT 1 оказывается в закрытом состоянии, поскольку за счет заряда на конденсаторе к его базе прикладывается отрицательное напряжение. Транзистор VT 2 остается в открытом состоянии и после окончания входного сигнала, так как потенциал коллектора транзистора VT 1 при его закрывании увеличился, и соответственно возросло напряжение на базе VT 2 .

При переключении схемы формируется фронт выходного импульса, который обычно снимается с коллектора транзистора VT 1 . В дальнейшем в схеме протекает процесс перезаряда конденсатора .Напряжение на нем
, а следовательно, и напряжение на базе транзистора VT 1 изменяется по экспоненциальному закону
,где
.

Когда в момент времени напряжение на базе достигает значения
, транзистор VT 1 открывается, напряжение на его коллекторе
уменьшается и закрывается транзистор VT 2 . При этом формируется срез выходного импульса. Длительность импульса получим, если положить
:

.

Так как
, то . Длительность среза
.

В дальнейшем в схеме протекает ток заряда конденсатора через резистор
и базовую цепь открытого транзистораVT 1 . Длительность этого процесса, который определяет время восстановления схемы,
.

Амплитуда выходных импульсов в такой схеме одновибратора практически равна напряжению источника питания.

Одновибратор на логических элементах . Для реализации одновибратора на логических элементах обычно используют элементы И-НЕ. Структурная схема такого одновибратора включает два элемента (ЛЭ1 и ЛЭ2 ) и времязадающую цепочку
(рис. 6.29). Входы ЛЭ2 объединены, и он работает как инвертор. Выход ЛЭ2 соединен с одним из входов ЛЭ1 , а на другой его вход подается управляющий сигнал.

Чтобы схема находилась в устойчивом состоянии, на управляющий вход ЛЭ1 необходимо подать напряжение
(рис. 6.30). При этом условииЛЭ2 находится в состоянии «1», а ЛЭ1 – в состоянии «0». Любая другая комбинация состояний элементов не является устойчивой. В таком состоянии схемы на резисторе имеется некоторое падение напряжения, которое обусловлено током ЛЭ2 , протекающим в

его входной цепи. Схема генерирует прямоугольный импульс при кратковременном уменьшении (момент времени ) входного напряжения
. Через интервал времени, равный
(не показан на рис. 6.29), на выходеЛЭ1 напряжение увеличится. Этот скачок напряжения через конденсатор передается на вход ЛЭ2 . Элемент ЛЭ2 переключается в состояние «0». Таким образом, на входе 1 ЛЭ1 через интервал времени
начинает действовать напряжение
и этот элемент останется в состоянии единицы, если даже по истечении времени
напряжение
опять станет равно логической «1». Для нормальной работы схемы необходимо, чтобы длительность входного импульса
.

По мере заряда конденсатора выходной ток ЛЭ1 уменьшается. Соответственно уменьшается падение напряжения на :
. Одновременно несколько увеличивается напряжение
, стремясь к напряжению
, которое при переключенииЛЭ1 в состояние «1» было меньше
за счет падения напряжения на выходном сопротивлении ЛЭ1 . Это состояние схемы является временно устойчивым.

В момент времени напряжение
достигает порогового
и элементЛЭ2 переключается в состояние «1». На вход 1 ЛЭ1 подается сигнал
и он переключается в состояние лог. «0». При этом конденсатор , который в интервале времени от до зарядился, начинает разряжаться через выходное сопротивление ЛЭ1 и диод VD 1 . По истечении времени , определяемого процессом разряда конденсатора , схема переходит в исходное состояние.

Таким образом, на выходе ЛЭ2 генерируется импульс прямоугольной формы. Длительность его, зависящая от времени уменьшения
до
, определяется соотношением
, где
– выходное сопротивлениеЛЭ1 в состоянии «1». Время восстановления схемы , где
– выходное сопротивление ЛЭ1 в состоянии «0»; – внутреннее сопротивление диода в открытом состоянии.

и напряжение на инвертирующем входе невелико:
, где
падение напряжения на диоде в открытом состоянии. На неинвертирующем входе напряжение также постоянное:
, и так как
, то на выходе поддерживается неизменное напряжение
.

При подаче в момент времени входного импульса положительной полярности амплитудой
напряжение на неинвертирующем входе становится больше напряжения на инвертирующем входе и выходное напряжение скачком становится равным
. При этом также скачком увеличивается напряжение на неинвертирующем входе до
. Одновременно диод VD закрывается, конденсатор начинает заряжаться и на инвертирующем входе растет положительное напряжение (рис. 6.32). Пока
на выходе сохраняется напряжение
. В момент времени при
происходит изменение полярности выходного напряжения и напряжение на неинвертирующем входе принимает исходное значение, а напряжение начинает уменьшаться по мере разряда конденсатора .

Когда достигает значения
, открывается диод VD , и на этом процесс изменения напряжения на инвертирующем входе прекращается. Схема оказывается в устойчивом состоянии.

Длительность импульса, определяемая экспоненциальным процессом заряда конденсатора с постоянной времени
от напряжения
до
, равна
.

Так как
, то
.

Время восстановления схемы определяется длительностью процесса разряда конденсатора от
до
и с учетом принятых допущений
.

Генераторы на операционных усилителях обеспечивают формирование импульсов амплитудой до десятков вольт; длительность фронтов зависит от полосы частот операционного усилителя и может составлять доли микросекунды.

Блокинг-генератором называется генератор импульсов релаксационного типа в виде однокаскадного усилителя с положительной обратной связью, создаваемой с помощью трансформатора. Блокинг-генератор может работать в ждущем и автоколебательном режимах.

Ждущий режим работы блокинг -генератора. При работе в ждущем режиме схема имеет одно устойчивое состояние и генерирует импульсы прямоугольной формы, когда на вход поступают запускающие импульсы. Устойчивое состояние блокинг-генератора на германиевом транзисторе осуществляется путем включения источника смещения в базовую цепь. При использовании кремниевого транзистора источник смещения не требуется, поскольку транзистор при нулевом напряжении на базе закрыт (рис. 6.33).

Положительная обратная связь в схеме проявляется в том, что при нарастании тока в первичной (коллекторной) обмотке трансформатора, т. е. коллекторного тока транзистора (
), во вторичной (базовой) обмотке индуцируется напряжение такой полярности, что потенциал базы увеличивается. И, наоборот, при

базовое напряжение уменьшается. Такая связь реализуется путем соответствующего подключения начала обмоток трансформатора (на рис. 6.33, показаны точками).

В большинстве случаев трансформатор имеет третью (нагрузочную) обмотку, к которой подключается нагрузка .

Напряжения на обмотках трансформатора и токи, протекающие в них, связаны между собой следующим образом:
,
,
,
где
,
– коэффициенты трансформации;
– число витков первичной, вторичной и нагрузочной обмоток соответственно.

Длительность процесса включения транзистора настолько мала, что за это время ток намагничивания практически не нарастает (
). Поэтому уравнение токов при анализе переходного процесса включения транзистора упрощается:
.

При подаче в момент времени на базу транзистора отпирающего импульса(рис. 6.34) происходит увеличение тока
, транзистор переходит в активный режим и появляется коллекторный ток
. Приращение коллекторного тока на величину
приводит к увеличению напряжения на первичной обмотке трансформатора
, последующему росту приведенного

тока базы
и действительного тока, протекающего в цепи базы транзистора,
.

Таким образом, первоначальное изменение тока базы
в результате процессов, протекающих в схеме, приводит к дальнейшему изменению этого тока
, и если
, то процесс изменения токов и напряжений носит лавинообразный характер. Следовательно,условие самовозбуждения блокинг-генератора:
.

В отсутствие нагрузки (
) это условие упрощается:
. Так как
, то условие самовозбуждения в блокинг-генераторе выполняется довольно легко.

Процесс открывания транзистора, сопровождающийся формированием фронта импульса, заканчивается, когда он переходит в режим насыщения. При этом перестает выполняться условие самовозбуждения и в дальнейшем формируется вершина импульса. Так как транзистор насыщен:
, то к первичной обмотке трансформатора оказывается приложенным напряжение
и приведенные базовый ток
, а также ток нагрузки
, оказываются постоянными. Ток намагничивания при формировании вершины импульса может быть определен из уравнения
, откуда при нулевых начальных условиях получим
.

Таким образом, ток намагничивания в блокинг-генераторе, когда транзистор насыщен, нарастает во времени по линейному закону. В соответствии с уравнением токов также по линейному закону увеличивается коллекторный ток транзистора
.

С течением времени степень насыщения транзистора уменьшается, так как базовый ток остается постоянным
, а коллекторный ток нарастает. В некоторый момент времени коллекторный ток увеличивается настолько, что транзистор переходит из режима насыщения в активный режим и опять начинает выполняться условие самовозбуждения блокинг-генератора. Очевидно, что длительность вершины импульса определяется временем, в течение которого транзистор находится в режиме насыщения. Границе режима насыщения соответствует условие
. Следовательно,
.

Отсюда получаем формулу для расчета длительности вершины импульса:

.

Ток намагничивания
во время формирования вершины импульса увеличивается и в момент окончания этого процесса, т. е. при
, достигает значения
.

Так как к первичной обмотке импульсного трансформатора при формировании вершины импульса приложено напряжение источника питания , то амплитуда импульса на нагрузке
.

При переходе транзистора в активный режим происходит уменьшение коллекторного тока
. Во вторичной обмотке индуцируется напряжение, приводящее к уменьшению напряжения и тока базы, что, в свою очередь, вызывает дальнейшее снижение коллекторного тока. В схеме развивается регенеративный процесс, в результате которого транзистор переходит в режим отсечки и формируется срез импульса.

Протекающий лавинообразно процесс закрывания транзистора имеет столь малую длительность, что ток намагничивания за это время практически не изменяется и остается равным
. Следовательно, к моменту закрывания транзистора в индуктивности запасена энергия
. Эта энергия рассеивается только в нагрузке, так как коллекторная и базовая цепи закрытого транзистора оказываются разомкнутыми. Ток намагничивания при этом уменьшается по экспоненте:
, где
– постоянная времени. Протекающий через резистор ток создает обратный выброс напряжения на нем, амплитуда которого
, что также сопровождается всплеском напряжения на базе и коллекторе закрытого транзистора
. Воспользовавшись найденным ранее соотношением для
, получим:

,

.

Процесс рассеяния запасенной в импульсном трансформаторе энергии, определяющий время восстановления схемы , заканчивается через интервал времени
, после чего схема переходит в исходное состояние. Дополнительный всплеск коллекторного напряжения
может быть значительным. Поэтому в схеме блокинг-генератора принимаются меры к снижению величины
, для чего параллельно нагрузке или в первичную обмотку включают демпфирующую цепь, состоящую из диода VD 1 и резистора , сопротивление которого
(рис. 6.33). При формировании импульса диод закрыт, так как к нему приложено напряжение обратной полярности, и демпфирующая цепь не оказывает влияния на процессы в схеме. Когда при закрывании транзистора в первичной обмотке возникает всплеск напряжения, то к диоду прикладывается прямое напряжение, он открывается и ток протекает через резистор . Так как
, то всплеск коллекторного напряжения
и обратный выброс напряжения на существенно уменьшаются. Однако при этом возрастает время восстановления:
.

Не всегда последовательно с диодом включают резистор , и тогда амплитуда всплеска оказывается минимальной, но увеличивается его длительность.

импульсов. Процессы, протекающие в схеме, рассмотрим, начиная с момента времени , когда напряжение на конденсаторедостигает значения
и транзистор откроется (рис. 6.36).

Поскольку напряжение на вторичной (базовой) обмотке во время формирования вершины импульса остается постоянным
, то по мере заряда конденсатора базовый ток уменьшается по экспоненциальному закону
, где
– сопротивление области база – эмиттер насыщенного транзистора;
– постоянная времени.

В соответствии с уравнением токов коллекторный ток транзистора определяется выражением
.

Из приведенных соотношений следует, что в автоколебательном блокинг-генераторе во время формирования вершины импульса изменяются и базовый и коллекторный токи. Как видно, базовый ток с течением времени уменьшается. Коллекторный ток в принципе может и нарастать, и уменьшаться. Все зависит от соотношения между первыми двумя слагаемыми последнего выражения. Но если даже коллекторный ток и уменьшается, то медленнее, чем базовый ток. Поэтому при уменьшении базового тока транзистора наступает момент времени , когда транзистор выходит из режима насыщения и процесс формирования вершины импульса заканчивается. Таким образом, длительность вершины импульса определяется соотношением
. Тогда можно записать уравнение токов для момента окончания формирования вершины импульса:

.

После некоторых преобразований имеем
. Полученное трансцендентное уравнение можно упростить при условии
. Воспользовавшись разложением в ряд экспоненты и ограничившись первыми двумя членами
, получим формулу для расчета длительности вершины импульса
, где
.

Во время формирования вершины импульса за счет протекания базового тока транзистора напряжение на конденсаторе изменяется и к моменту закрывания транзистора оно становится равным
. Подставив в это выражение значение
и проинтегрировав, получим:

.

При переходе транзистора в активный режим работы снова начинает выполняться условие самовозбуждения и в схеме протекает лавинообразный процесс его закрывания. Как и в ждущем блокинг-генераторе, после закрывания транзистора протекает процесс рассеяния запасенной в трансформаторе энергии, сопровождающийся появлением всплесков коллекторного и базового напряжений. После окончания этого процесса транзистор продолжает находиться в закрытом состоянии благодаря тому, что к базе прикладывается отрицательное напряжение заряженного конденсатора . Это напряжение не остается постоянным, поскольку в закрытом состоянии транзистора через конденсатор и резистор протекает ток перезаряда от источника питания . Поэтому по мере перезаряда конденсатора напряжение на базе транзистора увеличивается по экспоненциальному закону
, где
.

Когда напряжение на базе достигает значения
, транзистор открывается и опять начинается процесс формирования импульса. Таким образом, длительность паузы, определяемая временем нахождения транзистора в закрытом состоянии, может быть рассчитана, если положить
. Тогда получим
.Для блокинг-генератора на германиевом транзисторе полученная формула упрощается, поскольку
.

Блокинг-генераторы имеют высокий коэффициент полезного действия, так как в паузе между импульсами ток от источника питания практически не потребляется. По сравнению с мультивибраторами и одновибраторами они позволяют получить большую скважность и меньшую длительность импульсов. Важным достоинством блокинг-генераторов является возможность получения импульсов, амплитуда которых больше напряжения источника питания. Для этого достаточно, чтобы коэффициент трансформации третьей (нагрузочной) обмотки
. В блокинг-генераторе при наличии нескольких нагрузочных обмоток можно осуществить гальваническую развязку между нагрузками и получать импульсы разной полярности.

Схема блокинг-генератора не реализуется в интегральном исполнении из-за наличия импульсного трансформатора.

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве та­кого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммута­тор индуктивности. Недостатки такого схемного решения очевид­ны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных бьютродействующих электрон­ных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно уп­ростились и стали конкурентоспособными.

Основой одного из наиболее простых вьюоковольтных ге­нераторов (рис. 12.1) является индуктивный накопитель энер­гии .

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии

Генератор прямоугольных импульсов собран на микросхеме 555 {КР1006ВИ1). Параметры импульсов регулируются потенцио­метрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора 01. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (ком­мутирующего) элемента - мощного транзистора VT1.

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную об­мотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы вьюокого напряжения. Для защиты транзистора VT1 {2N3055 - КТ819ГМ) от пробоя желательно параллельно переходу эмит­тер - коллектор подключить диод, например, типа КД226 (като­дом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 {К1006ВИ1). Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти им­пульсы через RC-цепочки поступают на ключевью элементы на транзисторах VT1 и VT2. Стабилитроны VD3 и VD4 защища­ют транзисторы от повреждения при работе на индуктивную нагрузку.

Рис. 12.2. Схема генератора высокого напряжения на основе ин­дуктивного накопителя энергии

Генератор вьюокого напряжения (рис. 12.2) может быть ис­пользован как самостоятельно - для получения вьюокого напря­жения (обычно до 1…2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В.

В качестве ключевых элементов преобразователей с ин­дуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: до­вольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов послед­ние начали оттеснять биполярнью транзисторы в схемах источни­ков питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротив­ление открытого ключа может достигать десятью…сотью доли Ома, а рабочее напряжение достигать 1 …2 кВ.

На рис. 12.3 приведена электрическая схема преобразова­теля напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэф­фициентом передачи.

Электрическая схема генератора высоковольтных им­пульсов с ключевым полевым транзистором

Задающий генератор собран на /СМО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные на рис. 12.1 - 12.3 и далее, взаимозаменяемы и могут быть использованы в лю­бом сочетании.

Выходной каскад генератора вьюокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) вы­полнен на современной отечественной элементной базе .

При подаче на вход схемы управляющих импульсов транзи­сторы VT1 и VT2 кратковременно открываются. В результате ка­тушка индуктивности кратковременно подключается к источнику

Рис. 12.4. Схема выходного каскада генератора высокого напря­жения П. Брянцева на составном транзисторе

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта

питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажи­гания Б115. Ее основные параметры: Ri=1,6 Ом, \

Следующие две схемы вьюоковольтных генераторов нап­ряжения с использованием индуктивных накопителей энергии (рис. 12.5, 12.6) разработал Andres Estaban de la Plaza .

Первое из устройств содержит задающий генератор прямоугольных импульсов, промежуточный и выходной каскад, вьюоковольтный трансформатор.

Электрическая схема генератора высокого напряжения с задающим генератором на основе операционного усилителя

Задающий генератор выполнен на основе триггера Шмитта (КМО/7-микросхема типа 4093). Использование триггера Шмитта вместо логических элементов НЕ (см. например, рис. 12.3) позво­ляет получить импульсы с более крутыми фронтами, и, следова­тельно, снизить потери энергии на ключевых элементах.

Согласование КМО/7-элементов с силовым транзистором VT2 осуществляется предусилителем на транзисторе VT1. Вы­ходной трансформатор Т1 коммутируется силовым биполярным транзистором VT2. Этот транзистор установлен на теплоотводя-щей пластине.

Частота импульсов генератора ступенчато изменяется пе­реключателем SA1. Соотношение между длительностью импуль­са и паузой и частоту следования импульсов плавно регулируют потенциометрами R1 и R2.

Переключателем SA2 включают/отключают резистор R6, включенный последовательно с первичной обмоткой повышаю­щего трансформатора. Тем самым ступенчато регулируют выход­ную мощность преобразователя.

Рабочая частота генератора в его пяти поддиапазонах ре­гулируется в пределах 0,6…8,5 кГц; 1,5…20 кГц; 5,3…66 кГц; A3…МО кГц; 43…>200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразовате­ля на частотах ниже 5 кГц составляет 20 кВ, в области частот 50…70 кГц выходное напряжение снижается до 5… 10 /св.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необхо­димо принять особые меры по ограничению выходного тока.

Вьюоковольтный генератор, рис. 12.6 , имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном уси­лителе DA1 {СА3140), Для питания задающего генератора и бу­ферного каскада (микросхема DDI типа 4049) используется стабилизатор напряжения на 12 S на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах VT1 и VT2 обеспечивает работу оконечного - на мощном транзи­сторе VT3.

Соотношение длительность/пауза регулируют потенциомет­ром R7, а частоту импульсов - потенциометром R4.

Частоту генерации можно изменять ступенчато - переклю­чением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строч­ной развертки имеет 5… 10 витков, ее индуктивность примерно 0,5 мГн. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 - на КТ819ГМ; BD135 - на КТ943А, BD136 - на КТ626А, диоды 1N4148 - на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом - КР142ЕН8Б{Д); DDI - К561ТЛ1.

Следующим видом генераторов вьюоковольтного напряже­ния являются автогенераторнью преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением выра­батывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7) .

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением

Автогенератор импульсов высокого напряжения на транзи­сторе VT1 получает*сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота гене­рации - около 150 Гц. Конденсаторы С*, С2 и резистор R4 опре­деляют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе Ш 14×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотан­ных в два провода, а II - из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого ра­диатора размерами 40x40x4 мм. Этот стабилитрон можно заме­нить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиа­торе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуж­дением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А .

Трансформатор преобразователя выполнен на фторопла­стовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 - 35 витков провода ЛЭШО 7×0,07 мм. Катушки низко­вольтной половины устройства имеют по одному витку провода во

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью

фторопластовой (политетрафторэтиленовой) изоляции. Они на­мотаны поверх катушки L2.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное - 2,5 кВ). Частота преобразования - 2,5 МГц. Потребляемая мощность - 5 Вт. Выходное напряжение устройст­ва изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости 04 трансформатор настраивают на резонансную частоту. Резистором R2 устанавли­вают рабочую точку транзистора, регулируют уровень положи­тельной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе - при низкоомной на­грузке вьюокочастотная генерация срывается.

Следующая схема вьюоковольтного источника импульсно­го напряжения с двухкаскадным преобразованием показана на рис. 12.9 . Электрическая схема его первого каскада доста­точно традиционна и практически не отличается от рассмотрен­ных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использова­нии второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конст­рукцию трансформаторов и обеспечивает эффективную изоля­цию между входом и выходом устройства.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет

Рис. 12.9. Схема высоковольтного преобразователя с трансфор­маторной обратной связью и двойным трансформатор­ным преобразованием напряжения

16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20… 130 витков провода диаметром 1,0 мм. В качестве выходного (вьюоковольтного) трансформатора использована катушка зажи­гания автомобиля на 12 или 6 В.

К генераторам вьюокого напряжения с индуктивными нако­пителями энергии следует отнести и устройства, рассмотреннью ниже.

Для получения вьюоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизи­рованным с формирователем, а также показана возможность со­вмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формиро­вателем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных уз­лов схемы формирователя, - на рис. 12.12.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя

Рис. 12.11. Фрагмент схемы формирователя высоковольтных им­пульсов с раздельными ключами

Рис. 12.12. Временная диаграмма работы преобразователя

на время 1н и запирающие на время \^ (рис. 12.12). Их сумма опре­деляет период повторения импульсов. За время через дроссель L1 протекает ток I„. После запирания транзистора ток через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения и^, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному исполь­зованию полупроводниковых приборов в формирователе вы­соковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов

Длительность им­пульса, НС

Амплитуда генерируемого импульса, В

КД204, КД226 {КТ858, КТ862)

ДЛ112-25{КТ847)

ДЛ122-40 {КП953)

КД213 {КТ847)

ДЛ132-80 {КП953)

Формирователи двухполярных импульсов на основе серий­ных диодов имеют амплитуду каждой полуволны 0,2… 1 кВ для согласованной нагрузки 50…75 Ом при полной длительности им­пульса 4…30 НС и частоте повторения до 20 кГц.

Генератор импульсов тока (ГИТ) предназначен для формиро­вания многократно повторяющихся импульсов тока, воспроизво­дящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах и за истекшие годы не претерпели существенных изменений, однако значитель­но усовершенствовались их комплектующее оборудование и уро­вень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5-100 кВ), емкости конден­сатора (0,1 -10000 мкФ), запасенной энергии накопителя (10-106 Дж), частоты следования импульсов (0,1 -100 Гц).

Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.

Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема ге­нератора включает в себя следующие основные блоки: блок питания - трансформатор с выпрямителем; накопитель энер­гии - конденсатор; коммутирующее устройство - формирующий (воздушный) промежуток; нагрузка - рабочий искровой про­межуток. Кроме того, схемы ГИТ включают в себя токоограни­чивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых про­межутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.

ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии - конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства - воздушного формирующего промежутка - импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происхо­дит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от па­раметров разрядного контура, включая и рабочий искровой про­межуток. Если для одиночных импульсов специальных ГИТ пара­метры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергет-ические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.

Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повы­шает КПД.

Электрический КПД зарядного контура простой и надежной в эксплуатации схе{ды ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30-35 %), так как заряд конденсаторов осуществляется в ней пульсирующими напря­жением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % .

Для увеличения общей мощности при использовании простей­шей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи ко­торых соединены «звездой» или «треугольником» и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающий­ся формирующий -промежуток на один общий рабочий искровой промежуток в жидкости (рис. 3.1, б) [-|] . .4

При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. ОбгЦий электрический КПД резонансных схем очень высок (до 95 %), а при их использова­нии происходит автоматическое значительное повышение рабо­чего напряжения. Резонансные схемы целесообразно использо­вать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса

Ш = 1 /л[ГС,

Где со-частота вынуждающей ЭДС; Ь-индуктивность контура; С- емкость контура.

Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е. 50 и 100 Гц соответственно) при питании током про­мышленной частоты. Применение схемы наиболее рационально (. при мощности питающего трансформатора 15-30 кВт. В разряд­ный контур схемы вводится синхронизатор - воздушный форми­рующий промежуток, между шарами которого расположен вра-

Щающийся диск с контактом, вызывающим срабатывание форми­рующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения .

Схема трехфазного резонансного ГИТ (рис. 3.1,г) включает" в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонан­сная схема н^ один общий для всех или на три самостоятель­ных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шести­кратной частоте питающего тока (т. е. 150 или 300 Гц соответ­ственно) при работе на промышленной частоте. Схема рекомен­дуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного на­копителя (той же мощности) меньше, чем при использовании одно­фазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно" только до определенного предела .

Повысить экономичность процесса заряда емкостного накопи­теля ГИТ можно путем использования различных схем с фильтро­вой емкостью. Схема ГИТ с фильтровой емкостью и индуктив­ной зарядной цепью рабочей емкости (рис. 3.1, (3) позволяет по­лучать, практически любую частоту чередования импульсов при работе на небольших (до 0,1 ^мкФ) емкостях и имеет общий электрический КПД - около 85 %. Это достигается тем, что филь­тровая емкость работает в режиме неполной разрядки (до 20 %), а рабочая емкость заряжается через индуктивную цепь - дрос­сель с малым активным сопротивлением - в течение одного полу- периода в колебательном режиме, задаваемым вращением диска на первом формирующем. промежутке. При этом фильтровая емкость превышает рабочую в 15-20 раз .

Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально огра­ниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35-50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.

В схеме ГИТ с фильтровой емкостью (рис. 3.1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искро­вому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника - формирующего промежутка . Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении. шаров), чем это задано минимальным расстоянием между шарами раз­рядников. Это приводит к нестабильности основного параметра

Разрядов-.напряжения, а следовательно, к снижению надеж­ности работы генератора.

Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильт­ровой емкостью включают вращающееся коммутирующее устрой­ство - диск со скользящими контактами для поочередного пред­варительного бестокового включения и выключения зарядного и разрядного контуров.

При подаче напряжения на з"арядный контур генератора пер­воначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потен­циалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи ис­чезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искре­ния) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разряднйк, происходит его пробой, а также пробой рабочего искрового про­межутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контак­ты вращением диска могут быть разомкнуты вновь без разрушаю­щего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.

Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание цепей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надеж­ность работы генератора силовой установки.

Была разработана также схема питания электрогидравли - ческих установок, позволяющая наиболее рационально исполь­зовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рас­сеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10 % от первоначального) заряд.

Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасен­ная на одном конденсаторе С1, пройдя через формирующий про­межуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрас­ходованной энергия поступает на второй незаряженный конденса­тор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого
значения потенциала второго конденса­тора С2, пройдя через формирующий про­межуток ФП, разряжается на_ рабочий искровой промежуток РП и вновь неис­пользованная часть ее попадает теперь уже на первый конденсатор СУ и т. д.

Поочередное подсоединение каждого из конденсаторов то в зарядную, то в раз­рядную цепь производится переключате­лем /7, в котором токопроводящие пласти­ны А и В, разделенные диэлектриком, по­очередно подсоединяются к контактам 1-4 зарядного и разрядного контуров.

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100... 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Mitchell Lee

LT Journal of Analog Innovation

Источники импульсов с крутыми фронтами, имитирующие ступенчатую функцию, часто оказываются полезными при выполнении тех или иных лабораторных измерений. Например, если крутизна фронтов имеет порядок 1…2 нс, можно оценить время нарастания сигнала в кабеле RG-58/U или любом другом, взяв отрезок длиной всего 3…6 м. Рабочая лошадка многих лабораторий - вездесущий генератор импульсов HP8012B - не дотягивает до 5 нс, что недостаточно быстро для решения подобной задачи. Между тем, времена нарастания и спада выходных сигналов драйверов затворов некоторых контроллеров импульсных регуляторов могут быть менее 2 нс, что делает эти устройства потенциально идеальными источниками импульсов.

На Рисунке 1 показана простая схема реализации этой идеи, основанная на использовании контроллера обратноходового преобразователя , работающего на фиксированной частоте переключения. Собственная рабочая частота контроллера равна 200 кГц. Подача части выходного сигнала на вывод SENSE заставляет устройство работать с минимальным коэффициентом заполнения, формируя выходные импульсы длительностью 300 нс. Немаловажное значение для этой схемы имеет развязка питания, поскольку выходной ток, отдаваемый в нагрузку 50 Ом, превышает 180 мА. Элементы развязки 10 мкФ и 200 Ом минимизируют искажения вершины импульса без ущерба для крутизны фронтов.

Выход схемы подключается непосредственно к согласованной нагрузке 50 Ом, обеспечивая на ней размах сигнала около 9 В. В случае, когда первостепенное значение имеет качество импульсов, рекомендуется подавлять сигнал тройного прохождения, поглощая отражения от кабеля и удаленной нагрузки с помощью показанного на схеме последовательного согласования. Последовательное согласование, то есть, согласование на передающей стороне, оказывается полезным также тогда, когда схема работает на пассивные фильтры и иные аттенюаторы, рассчитанные на определенный импеданс источника сигнала. Выходной импеданс микросхемы LTC3803 равен примерно 1.5 Ом, что следует принимать во внимание при выборе сопротивления последовательного согласующего резистора. Последовательное согласование работает хорошо до импедансов, по меньшей мере, 2 кОм, выше которых становится трудно обеспечивать необходимую полосу пропускания в точке соединения резистора и схемы, что приводит к ухудшению качества импульсов.

В системе с последовательным согласованием выходной сигнал имеет следующие характеристики:

  • амплитуда импульсов - 4.5 В;
  • времена нарастания и спада одинаковы, и равны 1.5 нс;
  • искажение плоской вершины импульса - менее 10%;
  • спад вершины импульса - менее 5%.

При непосредственном подключении нагрузки 50 Ом времена нарастания и спада не ухудшаются. Для того, чтобы получить импульсы наилучшей формы, конденсатор 10 мкФ подключите как можно ближе к выводам V CC и GND микросхемы LTC3803, а выход соедините прямо с согласующим резистором, используя полосковую технологию. Волновое сопротивление, примерно равное 50 Ом, имеет печатный проводник шириной 2.5 мм на двухсторонней печатной плате толщиной 1.6 мм.

Материалы по теме

PMIC; преобразователь DC/DC; Uвх:5,7÷75В; Uвых:5,7÷75В; TSOT23-6

Поставщик Производитель Наименование Цена
ЭИК Linear Technology LTC3803ES6-5#TRMPBF 85 руб.
Триема Linear Technology LTC3803ES6#PBF 93 руб.
LifeElectronics LTC3803ES6-3 по запросу
ЭлектроПласт- Екатеринбург Linear Technology LTC3803HS6#PBF по запросу
  • Linear Technology вообще топовая фирма! Очень-очень жаль что их сожрала ширпотребовская Analog Devices. Ничего хорошего от этого не жди. Встречал я раньше статью англоязычного радиолюбителя. Он собрал генератор очень коротких импульсов шириной в единицы наносекунд и временами нарастания/спада в пикосекундах. На очень скоростном компараторе. Жаль не сохранил статью. И найти теперь никак не могу. Называлась что-то вроде "...real ultrafast comparator...", но как-то не так, не гуглится. Название компаратора забыл, и фирму его не помню. Компаратор на ebay тогда находил, около 500 руб стоил, в принципе бюджетно для действительно достойного прибора. У Linear Tecnology есть очень интересные микросхемки. Например LTC6957: время нарастания/спада 180/160 пс. Обалденно! Но сам построить измерительный прибор на подобной микрухе я вряд ли смогу.
  • Случаем не это на LT1721? Перестраиваемый 0-10нс.


Предыдущая статья: Следующая статья: