Главная » Неисправности » Трассоискатель из китайского будильника. Имитатор охранной сигнализации для дачного домика

Трассоискатель из китайского будильника. Имитатор охранной сигнализации для дачного домика

Бытовая автоматика

В. Каравкин
Радиоконструктор, 2001 год , №5, стр 29- 31

Сейчас практически во всех торговых палатках можно купить простенький электромеханический будильник китайского производства по очень даже приемлемой цене. При всей своей простоте данные будильники имеют достаточно хорошую точность хода и самое главное- наличие электромеханических контактов, замыкающихся при срабатывании будильника. Если к этим контактам аккуратно припаять провода (а делать это нужно крайне аккуратно чтобы не расплавить пластиковую основу), то с их помощью можно управлять различными устройствами, которые будут срабатывать по сигналу в заранее установленной время. Схемы двух таким устройств и приводятся ниже:

Автомат полива домашних растений

Суть устройства- при срабатывании будильника включается электронасос, подающий воду для комнатных растений (автор предлагает для этой цели использовать самый обыкновенный автомобильный стеклоомыватель с уже имеющимся резервуаром).
Так как время замыкания контактов может быть достаточно длительным (иногда даже до 1 часа!), то устройство снабжено таймером. Время таймера (а следовательно и время работы насоса) можно регулировать переменным резистором R4 в пределах от 2 до 15 секунд в зависимости от мощности насоса и размера поливаемого растения.

Эффект присутствия

Это устройство включает освещение когда хозяева отсутствуют, создавая тем самым эффект присутствия чтобы сбить с толку непрошенных гостей. Свет включается на 3 часа: то есть если Вы установили будильник на 6.00, то свет включится в 6.00 и погаснет только лишь в 9.00. Затем, будильник вновь сработает уже в 18.00, свет включится а погаснет в 21.00

Устройство также представляет собою таймер, но с уже более длительной задержкой.

Если нужны подробности скачайте журнал-источник в нашей бесплатной библиотеке (ссылка указана в начале)

Электроника в быту

Радиоконструктор, 2000 год , № 5, стр 30

Китайские будильники вошли в наш обиход как довольно точное и, самое главное, не дорогое устройство. У многих возникает вопрос- а можно ли сделать так чтобы по сигналу будильника включалось какое-то электронное устройство или просто освещение?
Ответ- конечно можно! Ведь по сути будильник имеет в своем составе звуковой излучатель на который поступают электрические импульсы и эти импульсы очень даже можно заставить включать электромагнитное реле.

Вариант схемы исполнительного устройства для китайского будильника представлен на рисунке

Схема подразумевает применение двух будильников- по сигналу одно реле включается, по сигналу с другого- выключается. В принципе если вариант с выключением не обязателен то схему можно и упростить применив всего один будильник Б2
Принцип срабатывания реле построен на эффекте гистерезиса самого реле- если для пуска реле требуется довольно значительный ток, то для удержания его в включенном состоянии ток нужен уже гораздо меньше.

На первый взгляд реле должно быть постоянно замкнуто- ведь оно подключено постоянно к "плюсу" питания и к "земле" через резистор R3. На самом деле тока проходящего через резистор R3 будет не достаточно для срабатывания реле. Для того чтобы оно сработало необходимо дать ему небольшой толчок. Роль толчка в данном случае выполняет транзистор VT4. При появлении сигнала с будильника Б2, на его базу попадут импульсы усиленные транзистором VT2, он начнет открываться и реле окажется подключенным непосредственно к "земле".
Таким образом для срабатывания реле применяются импульсы выходящие с будильника при появлении сигнала а для удержания реле в включенном состоянии достаточно тока проходящего через резистор R3.

Выключение реле работает таким-же образом: при включении будильника Б1 начнет открываться транзистор VT3, но он начнет кратковременно закорачивать обмотку реле и оно отключится.

Старинные часы сейчас, хоть и редко, но еще можно застать на вокзалах, автобусных остановках и иногда просто на улицах городов. Некоторым из них уже более полувека, и появились они во времена, когда большинство управляющих схем создавались при помощи реле. Но тем не менее, даже в таких старинных устройствах была реализована возможность удаленной настройки и синхронизации!

Прочитав статью, Вы узнаете как были устроены часовые сети прошлого и как можно оживить древнюю технологию с помощью Arduino.

Однажды ко мне обратились с весьма интересной просьбой – восстановить работоспособность старинных часов 60-х годов выпуска. Выглядели они не очень презентабельно и подозрительно напоминали дверцу от шкафа. С первого взгляда казалось, что это кустарная поделка. Но в правом нижнем углу гордо красовалась надпись «Стрела», из чего следовало, что модель заводская.

Что сразу привлекло внимание - это механизм, вернее, его полное отсутствие. С обратной стороны часов располагается привод стрелок, представляющий собой странный двигатель с редуктором.

Двигатель, хоть и похож на шаговый, но имеет всего два вывода с одной-единственной обмотки. Редуктор изготовлен из латуни и его передаточное число равно 1:12, и таким образом выходит, что двигатель вращает минутную стрелку, а часовая просто следует за ней.

Экспериментальным путем выяснилось, что если подать на обмотку двигателя 24 вольта постоянного тока, то минутная стрелка делает один шаг. При смене полярности питания стрелка делает еще шаг. Очевидно, что управляющая часть всей этой электромеханической системы отсутствует. Небольшой взгляд в историю поможет понять, куда же она делась.

В 60-е годы, когда электроника еще только-только вставала на ноги, различными учреждениями, организациями и заводами для отображения времени применялись гибридные электромеханические часы. В первую очередь, необходимость в них возникла в сфере пассажирского транспорта – для более эффективной диспетчеризации маршрутов поездов, трамваев и автобусов.

Кусочек фотографии С.И. Ахмерова из фотоальбома 1962 г., Новосибирск. Часы, висящие на столбе, являются частью системы троллейбусного сообщения - водители сверяют по ним время.

Требовалось, чтобы несколько часов имели одинаковые показания, при том, что физически могли находиться довольно далеко друг от друга, например в пределах маршрута транспорта или в здании. Задача эта была решена следующим образом:


Иллюстрация из книги Н.В. Сидорова «Эксплуатация электрочасовых установок», 1962г.

На картинке представлен практически весь спектр устройств, который мог входить в часовую сеть, и как становится понятно, мне достались именно вторичные часы. Устройство сети достаточно простое: центром являются так называемые электропервичные часы, которые раз в минуту выдают чередующиеся разнополярные импульсы. Групповые реле совместно с батареями служат в роли репитеров-повторителей, позволяющих разносить устройства на большие расстояния. Так как ток, потребляемый обмоткой реле меньше, чем у приводов часовых механизмов, то и потери, связанные с ростом сопротивления в длинных проводах, будут меньше. Батареи же используются в качестве локальных источников питания вторичных часов.

Понятное дело, что если есть вторичные часы, то можно попробовать найти и первичные. К сожалению обследование здания, где пролегала предполагаемая часовая сеть не дало особых результатов и самый лакомый кусок системы не был обнаружен. Но в литературе того времени очень хорошо описан принцип их действия:

Эти часы являют собой очень интересное звено в эволюции технологий. В них все еще используются хорошо отработанные методы довольно точного измерения временных интервалов при помощи колебаний маятника, являющегося сердцем любых механических часов. Но здесь это сердце приводит в движение электричество. Маятник примерно раз в несколько колебаний замыкает цепь питания электромагнита, дающего ему новый импульс для раскачки. Коромысло, с которым связан маятник, качаясь из стороны в сторону при помощи малой и большой собачек вращает храповое колесо. Смысл этой конструкции в том, что в какую бы сторону не совершал движение маятник, колесо будет вращаться лишь в одном направлении. Оно имеет 80 зубьев, и при периоде колебания маятника равном 1,5 секундам, делает пол-оборота за одну минуту. Дальше в дело вступает эбонитовый рычаг, установленный на этом же колесе - он поочередно замыкает нужные контактные группы:

А подгонный ключ позволяет подавать импульсы вручную. Качая его рукоять можно изменять время сразу на всех часах в сети!

Сопротивления в цепи тоже играют немаловажную роль - конструкторы прошлого не жалели энергии, потраченной на нагрев воздуха, потому что благодаря сопротивлениям уменьшается искрообразование на контактных группах, что ведет к повышению надежности и долговечности устройства (в те времена этим факторам уделяли больше внимания).

Теперь, поняв принцип работы часовой сети можно было смело сделать простенькое устройство, эмулирующее первичные часы, тем более что с помощью современных технологий это проще простого. Но данный рассказ был бы неполным без еще одной вещи, которая на мой взгляд, оказалась даже интереснее электропервичных часов:

Этот невзрачного вида ящик оказался еще одними вторичными часами из той же часофикационной сети, но не такими простыми как первые. Внутри расположился очень занятный механизм:

На дверце за циферблатом расположен электромагнит, проводящий в движение минутную стрелку. Часовая, как и в прошлом случае, связана с ней редуктором. Кроме всего этого есть большая шестерня, пронумерованная от 1 до 24, и с большим количеством отверстий для штифтов (нечто вроде нажимных лапок), которые можно туда закрутить. Внутри корпуса закреплены предохранители, сопротивления и старое реле. Все вместе это образует весьма замысловатую схему.

Обращение к литературе помогло понять, то это не что иное, как программные часы. Используя штифты, вкручиваемые в большую шестерню, можно задать время включения/отключения какой либо электрической нагрузки в определенное время.

В механизме есть свой подгонный ключ, который позволяет подстраивать часы вручную и связан с якорем. В зависимости от полярности напряжения на электромагните, якорь притягивается то в одну, то в другую сторону. Коромысло преобразует поступательное движение во вращательное. А шестерни механизма рассчитаны так, что большое программное колесо делает один оборот за сутки, а пятиминутное и недельное - в соответствии их названиям. В программном и недельном колесе есть отверстия под штифты, которые при обороте колеса замыкают нужные контакты. Точность такого «будильника» составляет пять минут. На часах, доставшихся мне были установлены штифты на время: 8:00, 12:00, 13:00 и 17:00 и на все дни, кроме воскресения. Значит, когда-то эти часы оповещали работников завода о начале смены, обеде и конце рабочего дня.

Работа механизма предполагает замыкание контактов на целую минуту. Разумеется, настолько длинный сигнал всех бы раздражал, потому компоненты в корпусе часов обеспечивают прекращение сигнала через определенное время. В соответствии с технологиями того времени, для этого случая применяется термогруппа - два соприкасающихся контакта, один из которых - биметаллический (на фото-слева от реле). При протекании тока через контакт он нагревается и размыкается за счет изгиба контакта. Это еще одна из причин, по которой точность измеряется минутами - термогруппа должна успеть остыть перед следующим срабатыванием. Время размыкания можно грубо регулировать настроечным винтиком.

Итак, схема, эмулирующая первичные часы будет выглядеть следующим образом:

В ней применяется импульсный блок питания постоянного тока на 24В, два реле и собственно, контроллер Arduino. Реле на 5В служит этакой гальванической развязкой, и замыкает 24-х вольтовое реле, которое в свою очередь перекоммутирует питание в противоположную полярность. Такой режим работы отличается от обычного, так как первичные часы выдавали импульсы, а здесь напряжение на привод часов подается постоянно. Это решение позволяет упростить схему не в ущерб работе.

Скетч для adruino прост, как мигание светодиодом:

Посмотреть код

void setup() {
pinMode(2, OUTPUT); // программируем пин два как выход
}

Void loop() {
digitalWrite(2, HIGH); // включить реле
minute(); // подождать пятьдесят секунд

digitalWrite(2, LOW); // выключить реле
minute(); //подождать пятьдесят секунд
delay(9535); //подстроечная величина, примерно 9,5 сек
}

Void minute(){
for(int i=1;i<=5;i++){
delay(10000);
}
}


Однако есть свои тонкости, связанные с тем, что минута у Arduino - это вовсе не минута реального времени (это связанно с кварцевым резонатором, тактами, а также инертностью реле, да и это совсем другая история), потому проще величину delay() подобрать вручную: засекая временной промежуток и вычисляя ошибку. После чего вносить поправку в значение подстроечной величины. У меня таким образом получилось настроить часы с точностью около минуты в сутки. Разумеется, можно сделать и лучше, но в этом не было необходимости.

Схема в сборе: пятивольтовое реле прошло за свою жизнь через многое, поэтому пришлось залить его силиконовым клеем.

Хорошо это или плохо, но сейчас часовая сеть оказалась не нужна, поэтому рассмотренные экземпляры часов продолжат свою работу уже в виде обыкновенных самодостаточных устройств, к которым все привыкли. Они будут как и полвека назад отсчитывать трудовые моменты и служить напоминанием об ушедшей эпохе, где таилось много интересного в казалось бы таких простых вещах.

Теги:

  • часы
  • часовая сеть
  • Arduino
  • реле
  • раритет
Добавить метки

КИТАЙСКАЯ ЭЛЕКТРОНИКА

Если проследить основные этапы развития радиоэлектроники и схемопостроения, становится заметно, что прогресс неуклонно идёт в сторону упрощения и уменьшения конструкций. Как в плане количества и размеров деталей, так и габаритов самой схемы. Особенно в этом преуспела китайская электроника.

И действительно, если обычная ЭВМ раньше занимала целую комнату, и представляла собой большие шкафы набитые лампами, то буквально с каждым десятилетием происходит революционный качественный скачок габаритов более чем на порядок.

Очень ярким примером этому являются микроконтроллеры, способные заменить собой пару десятков простых логических микросхем. Но в своих творческих изысканиях и конструировании схем можно пойти ещё дальше - используя готовые, залитые компаундом минимикросхемки из китайских электронных девайсов.

Например миниатюрные ёлочными гирляндами (1.5$) - готовый десятипрограмный переключатель на 4 выхода,
или электромеханические часы с будильником (0.5$) - готовый генератор прерывистого тонального сигнала,

Или китайские мягкие говорящие игрушки (0.5$) - целый звуковой цифровой синтезатор, питающийся от двух пуговичных часовых батареек,

Или простые цифровые часы плюс таймер (1$) - питания минипальчиковой ААА батарейки хватает на год,

Или (3$) - готовый приёмопередатчик на 433 МГц с дальностью 50 м и очень неплохой стабильностью! Спрашивается: Зачем тогда что-то усложнять? Не отрицая пользы самого процесса сборки устройства, думаю всё-таки не менее важен и результат. Старайтесь по максимуму использовать в своих конструкциях готовые дешёвые модули и блоки, и ваши схемы будут компактными, недорогими, а главное гораздо более простыми в сборке и настройке.

Если вы можете предложить свои идеи использования модулей промышленных устройств из китайской электроники, или у вас уже имеются фотографии готовых конструкций с их использованием - поделитесь ими на

Владельцы импортных музыкальных центров по достоинству оценили одну из их функций - включение магнитофона или проигрывателя компакт-дисков в заданное время. Вы просыпаетесь не под резкий звон будильника, а под любимую мелодию. И даже если очень хочется спать, придется встать, чтобы выключить аппарат. Вероятность того, что вы опоздаете на работу, отпадает. Тем же, у кого нет такого агрегата, приходится довольствоваться обычным будильником, который можно остановить и спать дальше, что очень часто и происходит. Либо ваш сон настолько крепок, что звон прекращается раньше, чем вы соберете волю в кулак и встанете. Вследствие такой ежеутренней борьбы со сном и рождаются самоделки, позволяющие обойтись без дорогостоящих заграничных «игрушек».

«Будило»

Так назвал свою конструкцию В. Кузьмин из г. Электростали Московской области. Это акустическое реле времени, срабатывающее от звука определенной амплитуды. Стоит будильнику зазвенеть, как включается приемник или магнитофон. Аппаратура отключится через заданный промежуток времени, который можно установить в диапазоне 0-30 мин. Мощность включаемой нагрузки - 200...300 Вт.

Внешне устройство представляет собой небольшую подставку под будильник и подсоединенную ней блок-вилку (рис. 1) с переключателем. В качестве чувствительного элемента в схеме использован графитовый микрофон от телефонного аппарата (рис. 2).

Сигнал от микрофона через С1 и резистор R2 (настройка чувствительности) и схему расширения импульсов на D1.1 и D1.2 поступает на вход 1 D1.3 RS-триггера на D1.3, D1.4, который переходит в Состояние «Включено», т.е. через VТ2, VT3 и VT4 запитывает реле К1, которое коммутирует сетевое напряжение на розетку «Нагрузка». Кроме этого, сигнал от D1.3 через дифференцирующую цепочку поступает на R-вход элемента D2, являющегося таймером, начинающего после этого отсчет времени, по истечении которого нагрузка будет вновь обесточена. Сигнал на выключение нагрузки снимается с вывода 5 D2 и через VТ1, R6 подается на вывод 6 D1.4 и переводит триггер в состояние «Выключени». Элементом, определяющим длительность выдержки времени состояния «Включено», является конденсатор С5, номинал которого каждый выбирает самостоятельно (можно простым подбором). Перевести будило в состояние «Выключено» можно принудительно в любое время при помощи кнопки SQ1 («Сброс»). Эта кнопка используется и при настройке акустической чувствительности устройства с помощью R2. При излишней чувствительности устройство может срабатывать от посторонних шумов, что не удобно. Настройку можно производить, установив звонящий будильник на корпус «будила» и плавно увеличивая чувствительность от нулевой до состояния срабатывания реле включения нагрузки. После чего нажимают кнопку «Сброс» и устройство готово, т.е. взведено,- пои очередном срабатывании будильник сработает как надо.

На принципиальной схеме (рис. 2) выделено два функциональных узла А1 и А2. Первый смонтирован в подставке под будильник, второй - в блок-вилке.

Блок А1 смонтирован на печатной плате (рис. 3). Монтажная схема представлена на рис. 4. Монтаж радиоэлементов сделан без сверления отверстий в плате. Благодаря этому печатная плата при установке в подставку выполняет функцию дна, но при этом не имеет наружных токопроводящих элементов. Микрофон смонтирован в вертикальной части подставки и заизолирован вклеенной пластиковой пластиной (пунктир на рис. 1). Кнопка SQ1 («Сброс») припаяна 1 мм медными проводами к контактным выводам «лежа» на плате, при этом для нее эти проводники выполняют функцию несущей конструкции, и снабжена специальной формы толкателем (см. рис. 1). Резистор R2 для регулировки чувствительности припаивается также «лежа» перед отверстием для регулировки на задней стенке.

Плата А1 скреплена с корпусом подставки четырьмя штырьками. Два из них - кусочки медной проволоки ∅1 мм - напаяны на плату. С их помощью плату «зацепляют» за основание карандашницы. Два других штырька - (гвоздики 1Х5 мм) предохраняют плату от «выпадания» - гвоздики проходят через боковые стенки корпуса в торец платы. Если попасть в торец платы (толщиной 1,5 мм) трудно, можно приклеить или припаять на плату небольшие пластинки с отверстиями. На дно подставки необходимо приклеить поролон 3 мм для демпфирования посторонних звуков, распространяющихся по поверхности, на которой стоит наше «будило».

Элементы устройства А2 смонтированы в блоке-вилке навесным монтажом. Устройство имеет переключатель режима работы. В режиме «Нет» оно используется как просто вилка. При этом нагрузка подсоединена непосредственно к сети. Корпус для блока-вилки можно сделать из подходящей по размерам пластиковой коробочки, например, корпуса от реле и т.п.

Корпус подставки под механический будильник может быть сделан из любого листового пластика. Желательно такого, который можно склеивать, например, дихлорэтаном или составом для клейки макетов авиамоделей.

Внимание! Устройство имеет бестрансформаторное питание. При наладке необходимо быть особенно внимательными, чтобы не попасть под напряжение.

Будильник-молчун

Назначение обычного будильника - показывать точное время и вовремя зазвенеть, чтобы разбудить хозяина. Отличие будильника, предлагаемого В. Георгиевым, заключается в том, что он включит или отключит от сети электроприбор независимо оттого, взведен ли механизм звонка. Нужно лишь поставить стрелку на нужное время, подключить устройство - и механизм сработает.

В жаркие летние ночи вентилятор помогает спокойно заснуть, но оставлять его работающим до утра бессмысленно. Вот тут и поможет будильник, который молча отключит вентилятор в заданное время. В долгие зимние вечера он обеспечит дополнительное освещение для комнатной оранжереи когда хозяева еще на работе. Он не позволит прозевать интересную передачу, вовремя включив телевизор или радиоприемник.

Сделать такой прибор можно из обычного механического будильника, лишь немного его «усовершенствовав». Для этого выкрутите ручки, ножки и кнопку, выньте механизм из корпуса, снимите стрелки, циферблат и отделите механизм от основной панели, вывинтив четыре гайки (рис. 1). Затем на основании нужно смонтировать изолированный контакт так, чтобы при совмещении сигнальной и часовой стрелок и срабатывании механизма звонка подпружиненный фиксатор замыкал цепь.

Цепь остается замкнутой после срабатывания не более 5-7 мин. Чтобы от этого не зависеть и исключить подключение к корпусу будильника сетевого напряжения, собрано простейшее устройство управления электроприборами (рис. 2), состоящее из понижающего трансформатора 220/25 В и печатной платы со смонтированными на ней элементами: выпрямляющего диода VD1 типа КД243, реле К1 типа РЭС9, сглаживающею электролитического конденсатора С1 емкостью не менее 200 мкф и рабочим напряжением 50 В, тиристора VS1 типа КУ101Б и резистора R1 39 кОм. Топология печатной платы и расположение элементов на ней даны на рис. 3. Предохранители FU1 на 0,125 A, FU2-1А смонтированы непосредственно на корпусе устройства в стандартных колодках.

Сверху на корпусе устройства управления, установлены две розетки (рис. 4). Одна из них нормально отключена от сети и предназначена для автоматического подключения электроприбора к сети в заданное время, другая - нормально подключена и в нужный момент отключается от сети. Чтобы не путать их, надо сделать соответствующие надписи. Красиво смотрятся надписи, сделанные с помощью переводного шрифта, покрытого сверху тонким слоем лака.

Для подключения будильника к устройству управления можно применить любой подходящий разъем. Я использовал колодки от двух неисправных батареек типа «Корунд».

Чтобы обеспечить доступ воздуха к трансформатору, в корпусе устройства управления предусмотрены вентиляционные отверстия.

Часы с иголочкой

Еще один вариант механического таймера предложил Я. Борисов (с. Верхневилюйск, респ. Саха). Он собрал конструкцию, в которой будильник служит составной частью цепи включения аппаратуры. Когда будильник срабатывает, ручка завода пружины звонка начинает крутиться, наматывая на себя нить, привязанную к ушку иголки. Иголка фактически служит спусковым крючком для замыкателя.

В качестве включателя использован корпус ручки, внутрь которого вложен стальной шарик, уложенный на пружинке. Когда иглу вставляют в прорезь, сделанную поперек корпуса, шарик отжимается вниз и отходит от верхнего контакта (А). Стоит иглу выдернуть, как пружина распрямится и прижмет шарик обратно к головке болтика (Б). К нижнему концу пружины и к болтику-контакту подсоединены провода, которые включены в разрыв цепи питания либо магнитофона (работающего от батареек), либо приемника трансляции.

И будильник, и корпус ручки зафиксированы на подставке. Такое устройство работает уже более пяти лет.

Внимание! Не стоит использовать это устройство для подключения аппаратуры в сеть 220 В.

Журнал «САМ» №4, 1996 год



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта