Главная » Шины » Генератор мощных импульсов тока схемы. Мощный лабораторный генератор импульсов

Генератор мощных импульсов тока схемы. Мощный лабораторный генератор импульсов

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100... 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Генератор импульсов тока (ГИТ) предназначен для формиро­вания многократно повторяющихся импульсов тока, воспроизво­дящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах и за истекшие годы не претерпели существенных изменений, однако значитель­но усовершенствовались их комплектующее оборудование и уро­вень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5-100 кВ), емкости конден­сатора (0,1 -10000 мкФ), запасенной энергии накопителя (10-106 Дж), частоты следования импульсов (0,1 -100 Гц).

Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.

Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема ге­нератора включает в себя следующие основные блоки: блок питания - трансформатор с выпрямителем; накопитель энер­гии - конденсатор; коммутирующее устройство - формирующий (воздушный) промежуток; нагрузка - рабочий искровой про­межуток. Кроме того, схемы ГИТ включают в себя токоограни­чивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых про­межутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.

ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии - конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства - воздушного формирующего промежутка - импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происхо­дит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от па­раметров разрядного контура, включая и рабочий искровой про­межуток. Если для одиночных импульсов специальных ГИТ пара­метры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергет-ические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.

Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повы­шает КПД.

Электрический КПД зарядного контура простой и надежной в эксплуатации схе{ды ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30-35 %), так как заряд конденсаторов осуществляется в ней пульсирующими напря­жением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % .

Для увеличения общей мощности при использовании простей­шей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи ко­торых соединены «звездой» или «треугольником» и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающий­ся формирующий -промежуток на один общий рабочий искровой промежуток в жидкости (рис. 3.1, б) [-|] . .4

При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. ОбгЦий электрический КПД резонансных схем очень высок (до 95 %), а при их использова­нии происходит автоматическое значительное повышение рабо­чего напряжения. Резонансные схемы целесообразно использо­вать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса

Ш = 1 /л[ГС,

Где со-частота вынуждающей ЭДС; Ь-индуктивность контура; С- емкость контура.

Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е. 50 и 100 Гц соответственно) при питании током про­мышленной частоты. Применение схемы наиболее рационально (. при мощности питающего трансформатора 15-30 кВт. В разряд­ный контур схемы вводится синхронизатор - воздушный форми­рующий промежуток, между шарами которого расположен вра-

Щающийся диск с контактом, вызывающим срабатывание форми­рующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения .

Схема трехфазного резонансного ГИТ (рис. 3.1,г) включает" в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонан­сная схема н^ один общий для всех или на три самостоятель­ных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шести­кратной частоте питающего тока (т. е. 150 или 300 Гц соответ­ственно) при работе на промышленной частоте. Схема рекомен­дуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного на­копителя (той же мощности) меньше, чем при использовании одно­фазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно" только до определенного предела .

Повысить экономичность процесса заряда емкостного накопи­теля ГИТ можно путем использования различных схем с фильтро­вой емкостью. Схема ГИТ с фильтровой емкостью и индуктив­ной зарядной цепью рабочей емкости (рис. 3.1, (3) позволяет по­лучать, практически любую частоту чередования импульсов при работе на небольших (до 0,1 ^мкФ) емкостях и имеет общий электрический КПД - около 85 %. Это достигается тем, что филь­тровая емкость работает в режиме неполной разрядки (до 20 %), а рабочая емкость заряжается через индуктивную цепь - дрос­сель с малым активным сопротивлением - в течение одного полу- периода в колебательном режиме, задаваемым вращением диска на первом формирующем. промежутке. При этом фильтровая емкость превышает рабочую в 15-20 раз .

Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально огра­ниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35-50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.

В схеме ГИТ с фильтровой емкостью (рис. 3.1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искро­вому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника - формирующего промежутка . Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении. шаров), чем это задано минимальным расстоянием между шарами раз­рядников. Это приводит к нестабильности основного параметра

Разрядов-.напряжения, а следовательно, к снижению надеж­ности работы генератора.

Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильт­ровой емкостью включают вращающееся коммутирующее устрой­ство - диск со скользящими контактами для поочередного пред­варительного бестокового включения и выключения зарядного и разрядного контуров.

При подаче напряжения на з"арядный контур генератора пер­воначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потен­циалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи ис­чезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искре­ния) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разряднйк, происходит его пробой, а также пробой рабочего искрового про­межутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контак­ты вращением диска могут быть разомкнуты вновь без разрушаю­щего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.

Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание цепей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надеж­ность работы генератора силовой установки.

Была разработана также схема питания электрогидравли - ческих установок, позволяющая наиболее рационально исполь­зовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рас­сеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10 % от первоначального) заряд.

Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасен­ная на одном конденсаторе С1, пройдя через формирующий про­межуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрас­ходованной энергия поступает на второй незаряженный конденса­тор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого
значения потенциала второго конденса­тора С2, пройдя через формирующий про­межуток ФП, разряжается на_ рабочий искровой промежуток РП и вновь неис­пользованная часть ее попадает теперь уже на первый конденсатор СУ и т. д.

Поочередное подсоединение каждого из конденсаторов то в зарядную, то в раз­рядную цепь производится переключате­лем /7, в котором токопроводящие пласти­ны А и В, разделенные диэлектриком, по­очередно подсоединяются к контактам 1-4 зарядного и разрядного контуров.

В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:

--- Питание: 5-12в


---
Частота: 5Гц-1кГц.


---
Амплитуда выходных импульсов не менее 10в


--- Ток: около 100мА.

За основу был взят мультивибратор, он реализован на трех логических элементах микросхемы 2И-НЕ. Принцип которого при желании можно прочитать в Википедии. Но генератор сам по себе дает инверсный сигнал, что подтолкнуло меня применить инвертор (это 4-й элемент). Теперь мультивибратор дает нам импульсы положительного тока. Однако у мультивибратора нет возможности регулирования скважности. Она у него автоматически выставляется 50%. И тут меня осенило поставить ждущий мультивибратор реализованный на двух таких же элементах (5,6), благодаря которому появилась возможность регулировать скважность. Принципиальная схема на рисунке:

Естественно, предел указанный в моих требованиях не критичен. Все зависит от параметров С4 и R3 – где резистором можно плавно изменять длительность импульса. Принцип работы так же можно прочитать в википедии. Далее: для высокой нагрузочной способности был установлен эммитерный повторитель на транзисторе VT-1. транзистор применен самый распостранненый типа КТ315. резисторов R6 служит для ограничения выходного тока и зашита от перегорания транзистора в случае КЗ.

Микросхемы можно применять как ТТЛ, так и КМОП. В случае применения ТТЛ сопротивление R3 не более 2к. потому что: входное сопротивление этой серии приблизительно равно 2к. лично я использовал КМОП К561ЛА7 (она же CD4011) – два корпуса питание до 15в.

Отличный вариант для использования как ЗГ для какого ни будь преобразователя. Для использования генератора среди ТТЛ – подходят К155ЛА3, К155ЛА8 у последней коллекторы открыты и на выхода нужно вешать резисторы номиналом 1к.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

В данной статье поговорим про импульсный генератор для ячейки Мэйера.

Изучая элементную базу электронных плат, на которых были собраны все устройства входящие в состав сложной установки, применяемой Мэйером в водородном генераторе, установленном им на автомобиль, я собрал «главную часть» устройства – импульсный генератор.

Все электронные платы выполняют в Ячейке определённые задачи.

Электронная часть мобильной установки генератора водорода Мэйера состоит из двух полноценных устройств, оформленных в виде двух независимых блоков. Это блок управления и контроля ячейки, вырабатывающей кислородно-водородную смесь и блок управления и контроля за подачей этой смеси в цилиндры двигателя внутреннего сгорания. Фотография первого представлена ниже.

Блок управления и контроля за работой ячейки состоит из устройства вторичного питания обеспечивающего все платы модуля энергией и одиннадцати модулей – плат, состоящих из генераторов импульсов, схем контроля и управления. В этом же блоке, за платами импульсных генераторов находятся импульсные трансформаторы. Один из одиннадцати комплектов: плата импульсного генератора и импульсного трансформатора используется конкретно только для одной пары трубок Ячейки. А поскольку пар трубок одиннадцать, то и генераторов тоже одиннадцать.

.

Судя по фотографиям, импульсный генератор собран на простейшей элементной базе цифровых логических элементов. Принципиальные схемы, публикуемые на различных сайтах, посвящённых Ячейке Мэйера, по принципу работы не так далеки от её оригинала, за исключением одного – они упрощены и работают бесконтрольно. Другими словами, импульсы подаются на трубки-электроды до той поры, пока не наступит «пауза», которую по своему усмотрению оперативно с помощью регулировки устанавливает конструктор схемы. У Мэйера «пауза» формируется только тогда, когда сама Ячейка, состоящая из двух трубок, сообщит что пора бы эту паузу сделать. Имеется регулировка чувствительности схемы контроля, уровень которой устанавливается оперативно с помощью регулировки. Кроме того, имеется оперативная регулировка длительности «паузы» — времени, в течение которого на ячейку не поступают импульсы. В схеме генератора Мэйера предусмотрена автоматическая регулировка «паузы» в зависимости от необходимости количества вырабатываемого газа. Эта регулировка осуществляется по сигналу, поступающему от блок управления и контроля за подачей топливной смеси в цилиндры ДВС. Чем быстрее вращается двигатель внутреннего сгорания, тем больше расход кислородно-водородной смеси и тем короче «пауза» у всех одиннадцати генераторов.

На переднюю панель генератора Мэйера выведены шлицы подстроечных резисторов осуществляющих регулировку частоты импульсов, длительности паузы между пачками импульсов и ручной установки уровня чувствительности схемы контроля.

Для репликации опытного импульсного генератора нет необходимости в автоматическом контроле потребности газа и автоматическом регулировании «паузы». Это упрощает электронную схему импульсного генератора. Кроме того, современная электронная база более развита, чем была 30 лет назад, поэтому при наличии более современных микросхем, нет смысла использовать простейшие логические элементы, которые ранее использовал Мэйер.

В настоящей статье публикуется схема импульсного генератора, собранного мной, воссоздающего принцип работы генератора ячейки Мэйера. Это не первая моя конструкция импульсного генератора, до неё было ещё две более сложных схемы, способных генерировать импульсы различной формы, с амплитудной, частотной и временной модуляцией, схемами контроля тока нагрузки в цепях трансформатора и самой Ячейки, схемами стабилизации амплитуд импульсов и формы выходного напряжения на Ячейке. В результате исключения, по моему мнению «ненужных» функций получилась простейшая схема, очень похожая на схемы, публикуемые на различных сайтах, но отличающаяся от них наличием схемы контроля тока Ячейки.

Как и в других публикуемых схемах, в ячейке имеются два генератора. Первый является генератором – модулятором, формирующим пачки импульсов, а второй генератором импульсов. Особенностью схемы является то, что первый генератор — модулятор работает не в режиме автогенератора, как у других разработчиков схем Ячейки Мейера, а в режиме ждущего генератора. Модулятор работает по следующему принципу: На начальном этапе он разрешает работу генератора, а по достижении непосредственно на пластинах Ячейки определённой амплитуды тока, происходит запрет генерации.

В мобильной установке Мэйера в качестве импульсного трансформатора используется тонкий сердечник, а количество витков всех обмоток огромное. Ни в одном патенте не указаны ни размеры сердечника, ни количество витков. В стационарной установке у Мэйера замкнутый торроид с известными размерами и количеством витков. Именно его и решено было использовать. Но поскольку тратить энергию впустую на намагничивание в однотактной схеме генератора это – расточительство, было решено использовать трансформатор с зазором, взяв за основу ферритовый сердечник от строчного трансформатора ТВС-90 применяемого в транзисторных чёрно-белых телевизорах. Он наиболее подходит под параметры, указанные в патентах Мэйера для стационарной установки.

Принципиальная электрическая схема Ячейки Мэйера в моём исполнении представлена на рисунке.

.

Никакой сложности в конструкции генератора импульсов нет. Он собран на банальных микросхемах – таймерах LM555. По причине того, что генератор экспериментальный и неизвестно какие токи нагрузки нас могут ожидать, для надёжности в качестве выходного транзистора VT3 используется IRF.

Когда ток Ячейки достигнет определённого порога, при котором происходит разрыв молекул воды, необходимо сделать паузу в подаче импульсов на Ячейку. Для этого служит кремниевый транзистор VT1 — КТ315Б, который запрещает работу генератора. Резистор R13 «Ток срыва генерации» предназначен для установки чувствительности схемы контроля.

Переключатель S1 «Длительность грубо» и резистор R2 «Длительность точно» являются оперативными регулировками длительности паузы между пачками импульсов.

В соответствии с патентами Мэйера трансформатор имеет две обмотки: первичная содержит 100 витков (для 13 вольт питания) провода ПЭВ-2 диаметром 0,51 мм, вторичная содержит 600 витков провода ПЭВ-2 диаметром 0,18 мм.

При указанных параметрах трансформатора оптимальная частота следования импульсов – 10 кГц. Катушка индуктивности L1 намотана на картонной оправке диаметром 25 мм, и содержит 100 витков провода ПЭВ-2 диаметром 0,51 мм.

Теперь, когда вы всё это «проглотили», произведём разбор полётов этой схемы. С данной схемой я не применял дополнительных схем повышающих выход газа, потому что в мобильной Ячейке Мэйера их не наблюдается, конечно не считая лазерной стимуляции. Или я забыл сходить со своей Ячейкой к «бабке – шептунье», чтобы она нашептала высокую производительность Ячейки, или не правильно выбрал трансформатор, но КПД установки получился очень низкий, а сам трансформатор сильно нагревался. Учитывая, что сопротивление воды мало, сама Ячейка не способна выступать в качестве накопительного конденсатора. Ячейка просто не работала по тому «сценарию» который описывал Мэйер. Поэтому я добавил в схему дополнительный конденсатор С11. Только в этом случае на осциллограмме выходного напряжения появилась форма сигнала, с выраженным процессом накопления. Почему я поставил его не параллельно Ячейке, а через дроссель? Схема контроля тока ячейки должна отслеживать резкое повышение этого тока, а конденсатор будет препятствовать этому своим зарядом. Катушка уменьшает влияние С11 на схему контроля.

Я использовал простую воду из под крана, использовал и свежее дистиллированную. Как я только не извращался, но затраты энергии при фиксированной производительности были в три — четыре раза выше, чем напрямую от аккумулятора через ограничительный резистор. Сопротивление воды в ячейке настолько мало, что повышение импульсного напряжения трансформатором, с лёгкостью гасилось на малом сопротивлении, заставляя магнитопровод трансформатора сильно нагреваться. Возможно, предположить, что вся причина в том, что я использовал трансформатор на феррите, а в мобильной версии Ячейки Мэйера стоят трансформаторы, у которых сердечник почти отсутствует. Он больше выполняет функцию каркаса. Не трудно понять, что Мэйер компенсировал малую толщину сердечника большим количеством витков, тем самым увеличив индуктивность обмоток. Но сопротивление воды от этого не увеличится, поэтому и напряжение, о котором пишет Мэйер, не поднимется до описываемого в патентах значения.

С целью повышения КПД я решил «выкинуть» из схемы трансформатор, на котором происходит потеря энергии. Принципиальная электрическая схема Ячейки Мэйера без трансформатора представлена на рисунке.

.

Так как индуктивность катушки L1 очень маленькая, я так же исключил её из схемы. И «о чудо» установка стала выдавать сравнительно высокий КПД. Я провёл эксперименты и пришел к выводу, что на заданный объём газа установка затрачивает ту же самую энергию, что и при электролизе постоянным током, плюс-минус погрешность измерений. То есть я наконец собрал установку, в которой не происходит потерь энергии. Но зачем она нужна, если напрямую от аккумулятора точно такие же затраты энергии?

Завершение

Завершим тему очень маленького сопротивления воды. Сама Ячейка не способна работать в качестве накопительного конденсатора потому, что вода, которая выступает в качестве диэлектрика конденсатора, быть им не может – она проводит ток. Для того, чтобы над ней совершался процесс электролиза – разложения на кислород и водород, она должна быть проводящей. Получается неразрешимое противоречие, которое возможно разрешить только по одному пути: Отказаться от версии «Ячейка-конденсатор». Накопления в Ячейке подобно конденсатору происходить не может, это Миф! Если учитывать площадь обкладок конденсатора образованного поверхностями трубок, то даже при воздушном диэлектрике ёмкость ничтожно мала, а здесь в качестве диэлектрика выступает вода со своим малым активным сопротивлением. Не верите? Возьмите учебник физики и посчитайте ёмкость.

Можно предположить, что накопление происходит на катушке L1, но этого также не может быть по той причине, что её индуктивность также очень мала для частоты порядка 10 кГц. Индуктивность трансформатора на несколько порядков выше. Можно даже задуматься над тем, зачем её с малой индуктивностью вообще «воткнули» в схему.

Послесловие

Кто-то скажет, что всё чудо в бифилярной намотке. В том виде, в каком она представлена в патентах Мэйером, толку от неё не будет. Бифилярная намотка применяется в защитных фильтрах питания, не одного и того же проводника, а противоположных по фазе и предназначена для подавления высоких частот. Она даже имеется во всех без исключения блоках питания компьютеров и ноутбуков. А для одного и того же проводника, бифилярная намотка делается в проволочном резисторе, для подавления индуктивных свойств самого резистора. Бифилярная намотка может использоваться в качестве фильтра, защищающего выходной транзистор, не пропускающего мощные СВЧ-импульсы в схему генератора, подаваемые от источника этих импульсов непосредственно на Ячейку. Кстати и катушка L1 является отличным фильтром для СВЧ. Первая схема импульсного генератора, которая использует повышающий трансформатор – правильная, только чего-то не хватает между транзистором VT3 и самой Ячейкой. Этому я посвящу следующую статью.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта